donut-docvqa / app.py
nielsr's picture
nielsr HF Staff
Update app.py
b098c92
raw
history blame
2.27 kB
import re
import gradio as gr
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def process_document(image):
# prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
# prepare decoder inputs
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
question = "When is the coffee break?"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
# generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor.token2json(sequence)
demo = gr.Interface(
fn=process_document,
inputs= gr.inputs.Image(type="pil"),
outputs="json",
title=f"Interactive demo: Donut 🍩 for DocVQA",
description="""This model is fine-tuned on the DocVQA dataset. <br>
Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/donut
Notebooks: https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut
More details are available at:
- Paper: https://arxiv.org/abs/2111.15664
- Original repository: https://github.com/clovaai/donut""",
examples=[["example_1.png"]],
cache_examples=False,
)
demo.launch()