nidhibodar11 commited on
Commit
e096a7f
·
verified ·
1 Parent(s): 2647e36

changed imports

Browse files
Files changed (1) hide show
  1. app.py +14 -13
app.py CHANGED
@@ -1,20 +1,22 @@
1
- import streamlit as st
2
- import os
3
- from langchain_groq import ChatGroq
4
  from langchain_community.document_loaders import WebBaseLoader
5
- # from langchain_community.embeddings import OllamaEmbeddings
6
- from langchain_google_genai import GoogleGenerativeAIEmbeddings
7
  from langchain.text_splitter import RecursiveCharacterTextSplitter
8
  from langchain.chains.combine_documents import create_stuff_documents_chain
9
  from langchain_core.prompts import ChatPromptTemplate
10
  from langchain.chains import create_retrieval_chain
11
- from langchain_community.vectorstores.faiss import FAISS
12
 
 
 
 
 
 
 
 
13
  import time
14
  from PyPDF2 import PdfReader
15
  import tempfile
16
 
17
-
18
  st.title("Ask your questions from pdf(s) or website")
19
  option = None
20
 
@@ -55,6 +57,11 @@ def llm_model():
55
  print("Response time :", time.process_time()-start)
56
  st.write(response['answer'])
57
 
 
 
 
 
 
58
  st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model = 'models/embedding-001')
59
  st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
60
 
@@ -76,10 +83,4 @@ if option:
76
  st.session_state.vector = FAISS.from_texts(st.session_state.final_documents,st.session_state.embeddings)
77
  llm_model()
78
 
79
- # with st.expander("Document Similarity Search"):
80
- # for i, doc in enumerate(response['context']):
81
- # st.write(doc.page_content)
82
- # st.write("-----------------------------")
83
-
84
-
85
 
 
1
+ # Langchain imports
2
+ from langchain_community.vectorstores.faiss import FAISS
 
3
  from langchain_community.document_loaders import WebBaseLoader
 
 
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain.chains.combine_documents import create_stuff_documents_chain
6
  from langchain_core.prompts import ChatPromptTemplate
7
  from langchain.chains import create_retrieval_chain
 
8
 
9
+ # Embedding and model imports
10
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
11
+ from langchain_groq import ChatGroq
12
+
13
+ # Other
14
+ import streamlit as st
15
+ import os
16
  import time
17
  from PyPDF2 import PdfReader
18
  import tempfile
19
 
 
20
  st.title("Ask your questions from pdf(s) or website")
21
  option = None
22
 
 
57
  print("Response time :", time.process_time()-start)
58
  st.write(response['answer'])
59
 
60
+ with st.expander("Did not like the response? Check out more here"):
61
+ for i, doc in enumerate(response['context']):
62
+ st.write(doc.page_content)
63
+ st.write("-----------------------------")
64
+
65
  st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model = 'models/embedding-001')
66
  st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
67
 
 
83
  st.session_state.vector = FAISS.from_texts(st.session_state.final_documents,st.session_state.embeddings)
84
  llm_model()
85
 
 
 
 
 
 
 
86