revert back to Faiss
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
# Langchain imports
|
|
|
2 |
from langchain_groq import ChatGroq
|
3 |
from langchain_community.document_loaders import WebBaseLoader
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
@@ -6,7 +7,6 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
6 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
from langchain_core.prompts import ChatPromptTemplate
|
8 |
from langchain.chains import create_retrieval_chain
|
9 |
-
from langchain_pinecone import PineconeVectorStore
|
10 |
|
11 |
# Embedding and model import
|
12 |
# Other
|
@@ -62,10 +62,6 @@ st.session_state.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2
|
|
62 |
|
63 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
|
64 |
|
65 |
-
index_name = "myindex"
|
66 |
-
st.session_state.vector = PineconeVectorStore(index_name=index_name, embedding=st.session_state.embeddings)
|
67 |
-
|
68 |
-
|
69 |
if option:
|
70 |
if option == "Website":
|
71 |
website_link = st.text_input("Enter the website link:")
|
@@ -74,7 +70,7 @@ if option:
|
|
74 |
st.session_state.loader = WebBaseLoader(website_link)
|
75 |
st.session_state.docs = st.session_state.loader.load()
|
76 |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
77 |
-
st.session_state.vector =
|
78 |
st.success("Done!")
|
79 |
llm_model()
|
80 |
|
@@ -84,7 +80,7 @@ if option:
|
|
84 |
with st.spinner("Loading pdf..."):
|
85 |
st.session_state.docs = get_pdf_processed(pdf_files)
|
86 |
st.session_state.final_documents = st.session_state.text_splitter.split_text(st.session_state.docs)
|
87 |
-
st.session_state.vector =
|
88 |
st.success("Done!")
|
89 |
st.empty()
|
90 |
llm_model()
|
|
|
1 |
# Langchain imports
|
2 |
+
from langchain_community.vectorstores.faiss import FAISS
|
3 |
from langchain_groq import ChatGroq
|
4 |
from langchain_community.document_loaders import WebBaseLoader
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
7 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
8 |
from langchain_core.prompts import ChatPromptTemplate
|
9 |
from langchain.chains import create_retrieval_chain
|
|
|
10 |
|
11 |
# Embedding and model import
|
12 |
# Other
|
|
|
62 |
|
63 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
|
64 |
|
|
|
|
|
|
|
|
|
65 |
if option:
|
66 |
if option == "Website":
|
67 |
website_link = st.text_input("Enter the website link:")
|
|
|
70 |
st.session_state.loader = WebBaseLoader(website_link)
|
71 |
st.session_state.docs = st.session_state.loader.load()
|
72 |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
73 |
+
st.session_state.vector = FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings)
|
74 |
st.success("Done!")
|
75 |
llm_model()
|
76 |
|
|
|
80 |
with st.spinner("Loading pdf..."):
|
81 |
st.session_state.docs = get_pdf_processed(pdf_files)
|
82 |
st.session_state.final_documents = st.session_state.text_splitter.split_text(st.session_state.docs)
|
83 |
+
st.session_state.vector = FAISS.from_texts(st.session_state.final_documents,st.session_state.embeddings)
|
84 |
st.success("Done!")
|
85 |
st.empty()
|
86 |
llm_model()
|