Spaces:
Runtime error
Runtime error
from tqdm import trange | |
import torch | |
from torch.utils.data import DataLoader | |
from logger import Logger | |
from modules.model import GeneratorFullModel, DiscriminatorFullModel | |
from torch.optim.lr_scheduler import MultiStepLR | |
from sync_batchnorm import DataParallelWithCallback | |
from frames_dataset import DatasetRepeater | |
def train(config, generator, discriminator, kp_detector, he_estimator, checkpoint, log_dir, dataset, device_ids): | |
train_params = config["train_params"] | |
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=train_params["lr_generator"], betas=(0.5, 0.999)) | |
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=train_params["lr_discriminator"], betas=(0.5, 0.999)) | |
optimizer_kp_detector = torch.optim.Adam(kp_detector.parameters(), lr=train_params["lr_kp_detector"], betas=(0.5, 0.999)) | |
optimizer_he_estimator = torch.optim.Adam(he_estimator.parameters(), lr=train_params["lr_he_estimator"], betas=(0.5, 0.999)) | |
if checkpoint is not None: | |
start_epoch = Logger.load_cpk( | |
checkpoint, | |
generator, | |
discriminator, | |
kp_detector, | |
he_estimator, | |
optimizer_generator, | |
optimizer_discriminator, | |
optimizer_kp_detector, | |
optimizer_he_estimator, | |
) | |
else: | |
start_epoch = 0 | |
scheduler_generator = MultiStepLR(optimizer_generator, train_params["epoch_milestones"], gamma=0.1, last_epoch=start_epoch - 1) | |
scheduler_discriminator = MultiStepLR(optimizer_discriminator, train_params["epoch_milestones"], gamma=0.1, last_epoch=start_epoch - 1) | |
scheduler_kp_detector = MultiStepLR( | |
optimizer_kp_detector, train_params["epoch_milestones"], gamma=0.1, last_epoch=-1 + start_epoch * (train_params["lr_kp_detector"] != 0) | |
) | |
scheduler_he_estimator = MultiStepLR( | |
optimizer_he_estimator, train_params["epoch_milestones"], gamma=0.1, last_epoch=-1 + start_epoch * (train_params["lr_kp_detector"] != 0) | |
) | |
if "num_repeats" in train_params or train_params["num_repeats"] != 1: | |
dataset = DatasetRepeater(dataset, train_params["num_repeats"]) | |
dataloader = DataLoader(dataset, batch_size=train_params["batch_size"], shuffle=True, num_workers=16, drop_last=True) | |
generator_full = GeneratorFullModel( | |
kp_detector, | |
he_estimator, | |
generator, | |
discriminator, | |
train_params, | |
estimate_jacobian=config["model_params"]["common_params"]["estimate_jacobian"], | |
) | |
discriminator_full = DiscriminatorFullModel(kp_detector, generator, discriminator, train_params) | |
if torch.cuda.is_available(): | |
generator_full = DataParallelWithCallback(generator_full, device_ids=device_ids) | |
discriminator_full = DataParallelWithCallback(discriminator_full, device_ids=device_ids) | |
with Logger(log_dir=log_dir, visualizer_params=config["visualizer_params"], checkpoint_freq=train_params["checkpoint_freq"]) as logger: | |
for epoch in trange(start_epoch, train_params["num_epochs"]): | |
for x in dataloader: | |
losses_generator, generated = generator_full(x) | |
loss_values = [val.mean() for val in losses_generator.values()] | |
loss = sum(loss_values) | |
loss.backward() | |
optimizer_generator.step() | |
optimizer_generator.zero_grad() | |
optimizer_kp_detector.step() | |
optimizer_kp_detector.zero_grad() | |
optimizer_he_estimator.step() | |
optimizer_he_estimator.zero_grad() | |
if train_params["loss_weights"]["generator_gan"] != 0: | |
optimizer_discriminator.zero_grad() | |
losses_discriminator = discriminator_full(x, generated) | |
loss_values = [val.mean() for val in losses_discriminator.values()] | |
loss = sum(loss_values) | |
loss.backward() | |
optimizer_discriminator.step() | |
optimizer_discriminator.zero_grad() | |
else: | |
losses_discriminator = {} | |
losses_generator.update(losses_discriminator) | |
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()} | |
logger.log_iter(losses=losses) | |
scheduler_generator.step() | |
scheduler_discriminator.step() | |
scheduler_kp_detector.step() | |
scheduler_he_estimator.step() | |
logger.log_epoch( | |
epoch, | |
{ | |
"generator": generator, | |
"discriminator": discriminator, | |
"kp_detector": kp_detector, | |
"he_estimator": he_estimator, | |
"optimizer_generator": optimizer_generator, | |
"optimizer_discriminator": optimizer_discriminator, | |
"optimizer_kp_detector": optimizer_kp_detector, | |
"optimizer_he_estimator": optimizer_he_estimator, | |
}, | |
inp=x, | |
out=generated, | |
) | |