Spaces:
Runtime error
Runtime error
""" | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy ([email protected]) | |
""" | |
import os | |
import cv2 | |
import glob | |
import time | |
import argparse | |
import numpy as np | |
from PIL import Image | |
from skimage import transform as tf | |
import GPEN.__init_paths as init_paths | |
from GPEN.retinaface.retinaface_detection import RetinaFaceDetection | |
from GPEN.face_model.face_gan import FaceGAN | |
from GPEN.sr_model.real_esrnet import RealESRNet | |
from GPEN.align_faces import warp_and_crop_face, get_reference_facial_points | |
def check_ckpts(model, sr_model): | |
# check if checkpoints are downloaded | |
try: | |
ckpts_folder = os.path.join(os.path.dirname(__file__), "weights") | |
if not os.path.exists(ckpts_folder): | |
print("Downloading checkpoints...") | |
from gdown import download_folder | |
file_id = "1epln5c8HW1QXfVz6444Fe0hG-vRNavi6" | |
download_folder(id=file_id, output=ckpts_folder, quiet=False, use_cookies=False) | |
else: | |
print("Checkpoints already downloaded, skipping...") | |
except Exception as e: | |
print(e) | |
raise Exception("Error while downloading checkpoints") | |
class FaceEnhancement(object): | |
def __init__(self, base_dir=os.path.dirname(__file__), size=512, model=None, use_sr=True, sr_model=None, channel_multiplier=2, narrow=1, use_facegan=True): | |
check_ckpts(model, sr_model) | |
self.facedetector = RetinaFaceDetection(base_dir) | |
self.facegan = FaceGAN(base_dir, size, model, channel_multiplier, narrow) | |
self.srmodel = RealESRNet(base_dir, sr_model) | |
self.use_sr = use_sr | |
self.size = size | |
self.threshold = 0.9 | |
self.use_facegan = use_facegan | |
# the mask for pasting restored faces back | |
self.mask = np.zeros((512, 512), np.float32) | |
cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA) | |
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) | |
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11) | |
self.kernel = np.array(([0.0625, 0.125, 0.0625], [0.125, 0.25, 0.125], [0.0625, 0.125, 0.0625]), dtype="float32") | |
# get the reference 5 landmarks position in the crop settings | |
default_square = True | |
inner_padding_factor = 0.25 | |
outer_padding = (0, 0) | |
self.reference_5pts = get_reference_facial_points((self.size, self.size), inner_padding_factor, outer_padding, default_square) | |
def process(self, img): | |
if self.use_sr: | |
img_sr = self.srmodel.process(img) | |
if img_sr is not None: | |
img = cv2.resize(img, img_sr.shape[:2][::-1]) | |
facebs, landms = self.facedetector.detect(img) | |
orig_faces, enhanced_faces = [], [] | |
height, width = img.shape[:2] | |
full_mask = np.zeros((height, width), dtype=np.float32) | |
full_img = np.zeros(img.shape, dtype=np.uint8) | |
for i, (faceb, facial5points) in enumerate(zip(facebs, landms)): | |
if faceb[4] < self.threshold: | |
continue | |
fh, fw = (faceb[3] - faceb[1]), (faceb[2] - faceb[0]) | |
facial5points = np.reshape(facial5points, (2, 5)) | |
of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size)) | |
# enhance the face | |
ef = self.facegan.process(of) if self.use_facegan else of | |
orig_faces.append(of) | |
enhanced_faces.append(ef) | |
tmp_mask = self.mask | |
tmp_mask = cv2.resize(tmp_mask, ef.shape[:2]) | |
tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3) | |
if min(fh, fw) < 100: # gaussian filter for small faces | |
ef = cv2.filter2D(ef, -1, self.kernel) | |
tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3) | |
mask = tmp_mask - full_mask | |
full_mask[np.where(mask > 0)] = tmp_mask[np.where(mask > 0)] | |
full_img[np.where(mask > 0)] = tmp_img[np.where(mask > 0)] | |
full_mask = full_mask[:, :, np.newaxis] | |
if self.use_sr and img_sr is not None: | |
img = cv2.convertScaleAbs(img_sr * (1 - full_mask) + full_img * full_mask) | |
else: | |
img = cv2.convertScaleAbs(img * (1 - full_mask) + full_img * full_mask) | |
return img, orig_faces, enhanced_faces | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, default="GPEN-BFR-512", help="GPEN model") | |
parser.add_argument("--size", type=int, default=512, help="resolution of GPEN") | |
parser.add_argument("--channel_multiplier", type=int, default=2, help="channel multiplier of GPEN") | |
parser.add_argument("--narrow", type=float, default=1, help="channel narrow scale") | |
parser.add_argument("--use_sr", action="store_true", help="use sr or not") | |
parser.add_argument("--sr_model", type=str, default="realesrnet_x2", help="SR model") | |
parser.add_argument("--sr_scale", type=int, default=2, help="SR scale") | |
parser.add_argument("--indir", type=str, default="examples/imgs", help="input folder") | |
parser.add_argument("--outdir", type=str, default="results/outs-BFR", help="output folder") | |
args = parser.parse_args() | |
# model = {'name':'GPEN-BFR-512', 'size':512, 'channel_multiplier':2, 'narrow':1} | |
# model = {'name':'GPEN-BFR-256', 'size':256, 'channel_multiplier':1, 'narrow':0.5} | |
os.makedirs(args.outdir, exist_ok=True) | |
faceenhancer = FaceEnhancement( | |
size=args.size, | |
model=args.model, | |
use_sr=args.use_sr, | |
sr_model=args.sr_model, | |
channel_multiplier=args.channel_multiplier, | |
narrow=args.narrow, | |
) | |
files = sorted(glob.glob(os.path.join(args.indir, "*.*g"))) | |
for n, file in enumerate(files[:]): | |
filename = os.path.basename(file) | |
im = cv2.imread(file, cv2.IMREAD_COLOR) # BGR | |
if not isinstance(im, np.ndarray): | |
print(filename, "error") | |
continue | |
# im = cv2.resize(im, (0,0), fx=2, fy=2) # optional | |
img, orig_faces, enhanced_faces = faceenhancer.process(im) | |
im = cv2.resize(im, img.shape[:2][::-1]) | |
cv2.imwrite(os.path.join(args.outdir, ".".join(filename.split(".")[:-1]) + "_COMP.jpg"), np.hstack((im, img))) | |
cv2.imwrite(os.path.join(args.outdir, ".".join(filename.split(".")[:-1]) + "_GPEN.jpg"), img) | |
for m, (ef, of) in enumerate(zip(enhanced_faces, orig_faces)): | |
of = cv2.resize(of, ef.shape[:2]) | |
cv2.imwrite(os.path.join(args.outdir, ".".join(filename.split(".")[:-1]) + "_face%02d" % m + ".jpg"), np.hstack((of, ef))) | |
if n % 10 == 0: | |
print(n, filename) | |