Spaces:
Runtime error
Runtime error
File size: 13,633 Bytes
efe586f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
import sys
import cv2
import yaml
import imageio
import numpy as np
import torch
import torch.nn.functional as F
sys.path.append("./face-vid2vid")
from sync_batchnorm import DataParallelWithCallback
from modules.generator import OcclusionAwareSPADEGenerator
from modules.keypoint_detector import KPDetector, HEEstimator
from animate import normalize_kp
from batch_face import RetinaFace
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
def load_checkpoints(config_path, checkpoint_path):
with open(config_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
generator = OcclusionAwareSPADEGenerator(**config["model_params"]["generator_params"], **config["model_params"]["common_params"])
# convert to half precision to speed up
generator.cuda().half()
kp_detector = KPDetector(**config["model_params"]["kp_detector_params"], **config["model_params"]["common_params"])
# the result will be wrong if converted to half precision, not sure why
kp_detector.cuda() # .half()
he_estimator = HEEstimator(**config["model_params"]["he_estimator_params"], **config["model_params"]["common_params"])
# the result will be wrong if converted to half precision, not sure why
he_estimator.cuda() # .half()
print("Loading checkpoints")
checkpoint = torch.load(checkpoint_path,map_location=torch.device('cpu'))
generator.load_state_dict(checkpoint["generator"])
kp_detector.load_state_dict(checkpoint["kp_detector"])
he_estimator.load_state_dict(checkpoint["he_estimator"])
generator = DataParallelWithCallback(generator)
kp_detector = DataParallelWithCallback(kp_detector)
he_estimator = DataParallelWithCallback(he_estimator)
generator.eval()
kp_detector.eval()
he_estimator.eval()
print("Model successfully loaded!")
return generator, kp_detector, he_estimator
def headpose_pred_to_degree(pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
pred = F.softmax(pred, dim=1)
degree = torch.sum(pred * idx_tensor, axis=1) * 3 - 99
return degree
def get_rotation_matrix(yaw, pitch, roll):
yaw = yaw / 180 * 3.14
pitch = pitch / 180 * 3.14
roll = roll / 180 * 3.14
roll = roll.unsqueeze(1)
pitch = pitch.unsqueeze(1)
yaw = yaw.unsqueeze(1)
pitch_mat = torch.cat(
[
torch.ones_like(pitch),
torch.zeros_like(pitch),
torch.zeros_like(pitch),
torch.zeros_like(pitch),
torch.cos(pitch),
-torch.sin(pitch),
torch.zeros_like(pitch),
torch.sin(pitch),
torch.cos(pitch),
],
dim=1,
)
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
yaw_mat = torch.cat(
[
torch.cos(yaw),
torch.zeros_like(yaw),
torch.sin(yaw),
torch.zeros_like(yaw),
torch.ones_like(yaw),
torch.zeros_like(yaw),
-torch.sin(yaw),
torch.zeros_like(yaw),
torch.cos(yaw),
],
dim=1,
)
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
roll_mat = torch.cat(
[
torch.cos(roll),
-torch.sin(roll),
torch.zeros_like(roll),
torch.sin(roll),
torch.cos(roll),
torch.zeros_like(roll),
torch.zeros_like(roll),
torch.zeros_like(roll),
torch.ones_like(roll),
],
dim=1,
)
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
rot_mat = torch.einsum("bij,bjk,bkm->bim", pitch_mat, yaw_mat, roll_mat)
return rot_mat
def keypoint_transformation(kp_canonical, he, estimate_jacobian=False, free_view=False, yaw=0, pitch=0, roll=0, output_coord=False):
kp = kp_canonical["value"]
if not free_view:
yaw, pitch, roll = he["yaw"], he["pitch"], he["roll"]
yaw = headpose_pred_to_degree(yaw)
pitch = headpose_pred_to_degree(pitch)
roll = headpose_pred_to_degree(roll)
else:
if yaw is not None:
yaw = torch.tensor([yaw]).cuda()
else:
yaw = he["yaw"]
yaw = headpose_pred_to_degree(yaw)
if pitch is not None:
pitch = torch.tensor([pitch]).cuda()
else:
pitch = he["pitch"]
pitch = headpose_pred_to_degree(pitch)
if roll is not None:
roll = torch.tensor([roll]).cuda()
else:
roll = he["roll"]
roll = headpose_pred_to_degree(roll)
t, exp = he["t"], he["exp"]
rot_mat = get_rotation_matrix(yaw, pitch, roll)
# keypoint rotation
kp_rotated = torch.einsum("bmp,bkp->bkm", rot_mat, kp)
# keypoint translation
t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1)
kp_t = kp_rotated + t
# add expression deviation
exp = exp.view(exp.shape[0], -1, 3)
kp_transformed = kp_t + exp
if estimate_jacobian:
jacobian = kp_canonical["jacobian"]
jacobian_transformed = torch.einsum("bmp,bkps->bkms", rot_mat, jacobian)
else:
jacobian_transformed = None
if output_coord:
return {"value": kp_transformed, "jacobian": jacobian_transformed}, {
"yaw": float(yaw.cpu().numpy()),
"pitch": float(pitch.cpu().numpy()),
"roll": float(roll.cpu().numpy()),
}
return {"value": kp_transformed, "jacobian": jacobian_transformed}
def get_square_face(coords, image):
x1, y1, x2, y2 = coords
# expand the face region by 1.5 times
length = max(x2 - x1, y2 - y1) // 2
x1 = x1 - length * 0.5
x2 = x2 + length * 0.5
y1 = y1 - length * 0.5
y2 = y2 + length * 0.5
# get square image
center = (x1 + x2) // 2, (y1 + y2) // 2
length = max(x2 - x1, y2 - y1) // 2
x1 = max(int(round(center[0] - length)), 0)
x2 = min(int(round(center[0] + length)), image.shape[1])
y1 = max(int(round(center[1] - length)), 0)
y2 = min(int(round(center[1] + length)), image.shape[0])
return image[y1:y2, x1:x2]
def smooth_coord(last_coord, current_coord, smooth_factor=0.2):
change = np.array(current_coord) - np.array(last_coord)
# smooth the change to 0.1 times
change = change * smooth_factor
return (np.array(last_coord) + np.array(change)).astype(int).tolist()
class FaceAnimationClass:
def __init__(self, source_image_path=None, use_sr=False):
assert source_image_path is not None, "source_image_path is None, please set source_image_path"
config_path = os.path.join(os.path.dirname(__file__), "face_vid2vid/config/vox-256-spade.yaml")
# save to local cache to speed loading
checkpoint_path = os.path.join(os.path.expanduser("~"), ".cache/torch/hub/checkpoints/FaceMapping.pth.tar")
if not os.path.exists(checkpoint_path):
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
from gdown import download
file_id = "11ZgyjKI5OcB7klcsIdPpCCX38AIX8Soc"
download(id=file_id, output=checkpoint_path, quiet=False)
if use_sr:
from face_vid2vid.GPEN.face_enhancement import FaceEnhancement
self.faceenhancer = FaceEnhancement(
size=256, model="GPEN-BFR-256", use_sr=False, sr_model="realesrnet_x2", channel_multiplier=1, narrow=0.5, use_facegan=True
)
# load checkpoints
self.generator, self.kp_detector, self.he_estimator = load_checkpoints(config_path=config_path, checkpoint_path=checkpoint_path)
source_image = cv2.cvtColor(cv2.imread(source_image_path), cv2.COLOR_RGB2BGR).astype(np.float32) / 255.
source_image = cv2.resize(source_image, (256, 256), interpolation=cv2.INTER_AREA)
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
self.source = source.cuda()
# initilize face detectors
self.face_detector = RetinaFace()
self.detect_interval = 8
self.smooth_factor = 0.2
# load base frame and blank frame
self.base_frame = cv2.imread(source_image_path) if not use_sr else self.faceenhancer.process(cv2.imread(source_image_path))[0]
self.base_frame = cv2.resize(self.base_frame, (256, 256))
self.blank_frame = np.ones(self.base_frame.shape, dtype=np.uint8) * 255
cv2.putText(self.blank_frame, "Face not", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(self.blank_frame, "detected!", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# count for frame
self.n_frame = 0
# initilize variables
self.first_frame = True
self.last_coords = None
self.coords = None
self.use_sr = use_sr
self.kp_source = None
self.kp_driving_initial = None
def _conver_input_frame(self, frame):
frame = cv2.resize(frame, (256, 256), interpolation=cv2.INTER_NEAREST).astype(np.float32) / 255.0
return torch.tensor(frame[np.newaxis]).permute(0, 3, 1, 2).cuda()
def _process_first_frame(self, frame):
print("Processing first frame")
# function to process the first frame
faces = self.face_detector(frame, cv=True)
if len(faces) == 0:
raise ValueError("Face is not detected")
else:
self.coords = faces[0][0]
face = get_square_face(self.coords, frame)
self.last_coords = self.coords
# get the keypoint and headpose from the source image
with torch.no_grad():
self.kp_canonical = self.kp_detector(self.source)
self.he_source = self.he_estimator(self.source)
face_input = self._conver_input_frame(face)
he_driving_initial = self.he_estimator(face_input)
self.kp_driving_initial, coordinates = keypoint_transformation(self.kp_canonical, he_driving_initial, output_coord=True)
self.kp_source = keypoint_transformation(
self.kp_canonical, self.he_source, free_view=True, yaw=coordinates["yaw"], pitch=coordinates["pitch"], roll=coordinates["roll"]
)
def _inference(self, frame):
# function to process the rest frames
with torch.no_grad():
self.n_frame += 1
if self.first_frame:
self._process_first_frame(frame)
self.first_frame = False
else:
pass
if self.n_frame % self.detect_interval == 0:
faces = self.face_detector(frame, cv=True)
if len(faces) == 0:
raise ValueError("Face is not detected")
else:
self.coords = faces[0][0]
self.coords = smooth_coord(self.last_coords, self.coords, self.smooth_factor)
face = get_square_face(self.coords, frame)
self.last_coords = self.coords
face_input = self._conver_input_frame(face)
he_driving = self.he_estimator(face_input)
kp_driving = keypoint_transformation(self.kp_canonical, he_driving)
kp_norm = normalize_kp(
kp_source=self.kp_source,
kp_driving=kp_driving,
kp_driving_initial=self.kp_driving_initial,
use_relative_movement=True,
adapt_movement_scale=True,
)
out = self.generator(self.source, kp_source=self.kp_source, kp_driving=kp_norm, fp16=True)
image = np.transpose(out["prediction"].data.cpu().numpy(), [0, 2, 3, 1])[0]
image = (np.array(image).astype(np.float32) * 255).astype(np.uint8)
result = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return face, result
def inference(self, frame):
# function to inference, input frame, output cropped face and its result
try:
if frame is not None:
face, result = self._inference(frame)
if self.use_sr:
result, _, _ = self.faceenhancer.process(result)
result = cv2.resize(result, (256, 256))
return face, result
except Exception as e:
print(e)
self.first_frame = True
self.n_frame = 0
return self.blank_frame, self.base_frame
if __name__ == "__main__":
from tqdm import tqdm
import time
faceanimation = FaceAnimationClass(source_image_path="tmp.png", use_sr=False)
video_path = "driver.mp4"
capture = cv2.VideoCapture(video_path)
fps = capture.get(cv2.CAP_PROP_FPS)
frames = []
_, frame = capture.read()
while frame is not None:
frames.append(frame)
_, frame = capture.read()
capture.release()
output_frames = []
time_start = time.time()
for frame in tqdm(frames):
face, result = faceanimation.inference(frame)
# show = cv2.hconcat([cv2.resize(face, (result.shape[1], result.shape[0])), result])
output_frames.append(result)
time_end = time.time()
print("Time cost: %.2f" % (time_end - time_start), "FPS: %.2f" % (len(frames) / (time_end - time_start)))
writer = imageio.get_writer("result2.mp4", fps=fps, quality=9, macro_block_size=1, codec="libx264", pixelformat="yuv420p")
for frame in output_frames:
writer.append_data(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# writer.append_data(frame)
writer.close()
print("Video saved to result2.mp4")
|