Update app.py
Browse files
app.py
CHANGED
|
@@ -1,252 +1,252 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
# coding: utf-8
|
| 3 |
-
|
| 4 |
-
# In[1]:
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
import validators, re
|
| 8 |
-
from fake_useragent import UserAgent
|
| 9 |
-
from bs4 import BeautifulSoup
|
| 10 |
-
import streamlit as st
|
| 11 |
-
from transformers import pipeline
|
| 12 |
-
import time
|
| 13 |
-
import base64
|
| 14 |
-
import requests
|
| 15 |
-
import docx2txt
|
| 16 |
-
from io import StringIO
|
| 17 |
-
from PyPDF2 import PdfFileReader
|
| 18 |
-
import warnings
|
| 19 |
-
warnings.filterwarnings("ignore")
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# In[2]:
|
| 23 |
-
|
| 24 |
-
time_str = time.strftime("%d%m%Y-%H%M%S")
|
| 25 |
-
#Functions
|
| 26 |
-
|
| 27 |
-
def article_text_extractor(url: str):
|
| 28 |
-
|
| 29 |
-
'''Extract text from url and divide text into chunks if length of text is more than 500 words'''
|
| 30 |
-
|
| 31 |
-
ua = UserAgent()
|
| 32 |
-
|
| 33 |
-
headers = {'User-Agent':str(ua.chrome)}
|
| 34 |
-
|
| 35 |
-
r = requests.get(url,headers=headers)
|
| 36 |
-
|
| 37 |
-
soup = BeautifulSoup(r.text, "html.parser")
|
| 38 |
-
title_text = soup.find_all(["h1"])
|
| 39 |
-
para_text = soup.find_all(["p"])
|
| 40 |
-
article_text = [result.text for result in para_text]
|
| 41 |
-
article_header = [result.text for result in title_text][0]
|
| 42 |
-
article = " ".join(article_text)
|
| 43 |
-
article = article.replace(".", ".<eos>")
|
| 44 |
-
article = article.replace("!", "!<eos>")
|
| 45 |
-
article = article.replace("?", "?<eos>")
|
| 46 |
-
sentences = article.split("<eos>")
|
| 47 |
-
|
| 48 |
-
current_chunk = 0
|
| 49 |
-
chunks = []
|
| 50 |
-
|
| 51 |
-
for sentence in sentences:
|
| 52 |
-
if len(chunks) == current_chunk + 1:
|
| 53 |
-
if len(chunks[current_chunk]) + len(sentence.split(" ")) <=
|
| 54 |
-
chunks[current_chunk].extend(sentence.split(" "))
|
| 55 |
-
else:
|
| 56 |
-
current_chunk += 1
|
| 57 |
-
chunks.append(sentence.split(" "))
|
| 58 |
-
else:
|
| 59 |
-
print(current_chunk)
|
| 60 |
-
chunks.append(sentence.split(" "))
|
| 61 |
-
|
| 62 |
-
for chunk_id in range(len(chunks)):
|
| 63 |
-
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
| 64 |
-
|
| 65 |
-
return article_header, chunks
|
| 66 |
-
|
| 67 |
-
def preprocess_plain_text(x):
|
| 68 |
-
|
| 69 |
-
x = x.encode("ascii", "ignore").decode() # unicode
|
| 70 |
-
x = re.sub(r"https*\S+", " ", x) # url
|
| 71 |
-
x = re.sub(r"@\S+", " ", x) # mentions
|
| 72 |
-
x = re.sub(r"#\S+", " ", x) # hastags
|
| 73 |
-
x = re.sub(r"\s{2,}", " ", x) # over spaces
|
| 74 |
-
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!?
|
| 75 |
-
|
| 76 |
-
return x
|
| 77 |
-
|
| 78 |
-
def extract_pdf(file):
|
| 79 |
-
|
| 80 |
-
'''Extract text from PDF file'''
|
| 81 |
-
|
| 82 |
-
pdfReader = PdfFileReader(file)
|
| 83 |
-
count = pdfReader.numPages
|
| 84 |
-
all_text = ""
|
| 85 |
-
for i in range(count):
|
| 86 |
-
page = pdfReader.getPage(i)
|
| 87 |
-
all_text += page.extractText()
|
| 88 |
-
|
| 89 |
-
return all_text
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def extract_text_from_file(file):
|
| 93 |
-
|
| 94 |
-
'''Extract text from uploaded file'''
|
| 95 |
-
|
| 96 |
-
# read text file
|
| 97 |
-
if file.type == "text/plain":
|
| 98 |
-
# To convert to a string based IO:
|
| 99 |
-
stringio = StringIO(file.getvalue().decode("utf-8"))
|
| 100 |
-
|
| 101 |
-
# To read file as string:
|
| 102 |
-
file_text = stringio.read()
|
| 103 |
-
|
| 104 |
-
# read pdf file
|
| 105 |
-
elif file.type == "application/pdf":
|
| 106 |
-
file_text = extract_pdf(file)
|
| 107 |
-
|
| 108 |
-
# read docx file
|
| 109 |
-
elif (
|
| 110 |
-
file.type
|
| 111 |
-
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 112 |
-
):
|
| 113 |
-
file_text = docx2txt.process(file)
|
| 114 |
-
|
| 115 |
-
return file_text
|
| 116 |
-
|
| 117 |
-
def summary_downloader(raw_text):
|
| 118 |
-
|
| 119 |
-
b64 = base64.b64encode(raw_text.encode()).decode()
|
| 120 |
-
new_filename = "new_text_file_{}_.txt".format(time_str)
|
| 121 |
-
st.markdown("#### Download Summary as a File ###")
|
| 122 |
-
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
| 123 |
-
st.markdown(href,unsafe_allow_html=True)
|
| 124 |
-
|
| 125 |
-
@st.cache(allow_output_mutation=True)
|
| 126 |
-
def facebook_model():
|
| 127 |
-
|
| 128 |
-
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
|
| 129 |
-
return summarizer
|
| 130 |
-
|
| 131 |
-
@st.cache(allow_output_mutation=True)
|
| 132 |
-
def schleifer_model():
|
| 133 |
-
|
| 134 |
-
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
|
| 135 |
-
return summarizer
|
| 136 |
-
|
| 137 |
-
#Streamlit App
|
| 138 |
-
|
| 139 |
-
st.title("Article Text and Link Extractive Summarizer 📝")
|
| 140 |
-
|
| 141 |
-
model_type = st.sidebar.selectbox(
|
| 142 |
-
"Model type", options=["Facebook-Bart", "Sshleifer-DistilBart"]
|
| 143 |
-
)
|
| 144 |
-
|
| 145 |
-
st.markdown(
|
| 146 |
-
"Model Source: [Facebook-Bart-large-CNN](https://huggingface.co/facebook/bart-large-cnn) and [Sshleifer-distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)"
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
st.markdown(
|
| 150 |
-
"""The app supports extractive summarization which aims to identify the salient information that is then extracted and grouped together to form a concise summary.
|
| 151 |
-
For documents or text that is more than 500 words long, the app will divide the text into chunks and summarize each chunk.
|
| 152 |
-
There are two models available to choose from:""")
|
| 153 |
-
|
| 154 |
-
st.markdown("""
|
| 155 |
-
- Facebook-Bart, trained on large [CNN and Daily Mail](https://huggingface.co/datasets/cnn_dailymail) news articles.
|
| 156 |
-
- Sshleifer-Distilbart, which is a distilled (smaller) version of the large Bart model."""
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
st.markdown("""Please do note that the model will take longer to generate summaries for documents that are too long.""")
|
| 160 |
-
|
| 161 |
-
st.markdown(
|
| 162 |
-
"The app only ingests the below formats for summarization task:"
|
| 163 |
-
)
|
| 164 |
-
st.markdown(
|
| 165 |
-
"""- Raw text entered in text box.
|
| 166 |
-
- URL of an article to be summarized.
|
| 167 |
-
- Documents with .txt, .pdf or .docx file formats."""
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
st.markdown("---")
|
| 171 |
-
|
| 172 |
-
url_text = st.text_input("Please Enter a url here")
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
st.markdown(
|
| 176 |
-
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
| 177 |
-
unsafe_allow_html=True,
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
plain_text = st.text_input("Please Paste/Enter plain text here")
|
| 181 |
-
|
| 182 |
-
st.markdown(
|
| 183 |
-
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
| 184 |
-
unsafe_allow_html=True,
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
upload_doc = st.file_uploader(
|
| 188 |
-
"Upload a .txt, .pdf, .docx file for summarization"
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
is_url = validators.url(url_text)
|
| 192 |
-
|
| 193 |
-
if is_url:
|
| 194 |
-
# complete text, chunks to summarize (list of sentences for long docs)
|
| 195 |
-
article_title,chunks = article_text_extractor(url=url_text)
|
| 196 |
-
|
| 197 |
-
elif upload_doc:
|
| 198 |
-
|
| 199 |
-
clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
|
| 200 |
-
|
| 201 |
-
else:
|
| 202 |
-
|
| 203 |
-
clean_text = preprocess_plain_text(plain_text)
|
| 204 |
-
|
| 205 |
-
summarize = st.button("Summarize")
|
| 206 |
-
|
| 207 |
-
# called on toggle button [summarize]
|
| 208 |
-
if summarize:
|
| 209 |
-
if model_type == "Facebook-Bart":
|
| 210 |
-
if is_url:
|
| 211 |
-
text_to_summarize = chunks
|
| 212 |
-
else:
|
| 213 |
-
text_to_summarize = clean_text
|
| 214 |
-
|
| 215 |
-
with st.spinner(
|
| 216 |
-
text="Loading Facebook-Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
| 217 |
-
):
|
| 218 |
-
summarizer_model = facebook_model()
|
| 219 |
-
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
| 220 |
-
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 221 |
-
|
| 222 |
-
elif model_type == "Sshleifer-DistilBart":
|
| 223 |
-
if is_url:
|
| 224 |
-
text_to_summarize = chunks
|
| 225 |
-
else:
|
| 226 |
-
text_to_summarize = clean_text
|
| 227 |
-
|
| 228 |
-
with st.spinner(
|
| 229 |
-
text="Loading Sshleifer-DistilBart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
| 230 |
-
):
|
| 231 |
-
summarizer_model = schleifer_model()
|
| 232 |
-
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
| 233 |
-
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 234 |
-
|
| 235 |
-
# final summarized output
|
| 236 |
-
st.subheader("Summarized text")
|
| 237 |
-
|
| 238 |
-
if is_url:
|
| 239 |
-
|
| 240 |
-
# view summarized text (expander)
|
| 241 |
-
st.markdown(f"Article title: {article_title}")
|
| 242 |
-
|
| 243 |
-
st.write(summarized_text)
|
| 244 |
-
|
| 245 |
-
summary_downloader(summarized_text)
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
# In[ ]:
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[1]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import validators, re
|
| 8 |
+
from fake_useragent import UserAgent
|
| 9 |
+
from bs4 import BeautifulSoup
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from transformers import pipeline
|
| 12 |
+
import time
|
| 13 |
+
import base64
|
| 14 |
+
import requests
|
| 15 |
+
import docx2txt
|
| 16 |
+
from io import StringIO
|
| 17 |
+
from PyPDF2 import PdfFileReader
|
| 18 |
+
import warnings
|
| 19 |
+
warnings.filterwarnings("ignore")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# In[2]:
|
| 23 |
+
|
| 24 |
+
time_str = time.strftime("%d%m%Y-%H%M%S")
|
| 25 |
+
#Functions
|
| 26 |
+
|
| 27 |
+
def article_text_extractor(url: str):
|
| 28 |
+
|
| 29 |
+
'''Extract text from url and divide text into chunks if length of text is more than 500 words'''
|
| 30 |
+
|
| 31 |
+
ua = UserAgent()
|
| 32 |
+
|
| 33 |
+
headers = {'User-Agent':str(ua.chrome)}
|
| 34 |
+
|
| 35 |
+
r = requests.get(url,headers=headers)
|
| 36 |
+
|
| 37 |
+
soup = BeautifulSoup(r.text, "html.parser")
|
| 38 |
+
title_text = soup.find_all(["h1"])
|
| 39 |
+
para_text = soup.find_all(["p"])
|
| 40 |
+
article_text = [result.text for result in para_text]
|
| 41 |
+
article_header = [result.text for result in title_text][0]
|
| 42 |
+
article = " ".join(article_text)
|
| 43 |
+
article = article.replace(".", ".<eos>")
|
| 44 |
+
article = article.replace("!", "!<eos>")
|
| 45 |
+
article = article.replace("?", "?<eos>")
|
| 46 |
+
sentences = article.split("<eos>")
|
| 47 |
+
|
| 48 |
+
current_chunk = 0
|
| 49 |
+
chunks = []
|
| 50 |
+
|
| 51 |
+
for sentence in sentences:
|
| 52 |
+
if len(chunks) == current_chunk + 1:
|
| 53 |
+
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
|
| 54 |
+
chunks[current_chunk].extend(sentence.split(" "))
|
| 55 |
+
else:
|
| 56 |
+
current_chunk += 1
|
| 57 |
+
chunks.append(sentence.split(" "))
|
| 58 |
+
else:
|
| 59 |
+
print(current_chunk)
|
| 60 |
+
chunks.append(sentence.split(" "))
|
| 61 |
+
|
| 62 |
+
for chunk_id in range(len(chunks)):
|
| 63 |
+
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
| 64 |
+
|
| 65 |
+
return article_header, chunks
|
| 66 |
+
|
| 67 |
+
def preprocess_plain_text(x):
|
| 68 |
+
|
| 69 |
+
x = x.encode("ascii", "ignore").decode() # unicode
|
| 70 |
+
x = re.sub(r"https*\S+", " ", x) # url
|
| 71 |
+
x = re.sub(r"@\S+", " ", x) # mentions
|
| 72 |
+
x = re.sub(r"#\S+", " ", x) # hastags
|
| 73 |
+
x = re.sub(r"\s{2,}", " ", x) # over spaces
|
| 74 |
+
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!?
|
| 75 |
+
|
| 76 |
+
return x
|
| 77 |
+
|
| 78 |
+
def extract_pdf(file):
|
| 79 |
+
|
| 80 |
+
'''Extract text from PDF file'''
|
| 81 |
+
|
| 82 |
+
pdfReader = PdfFileReader(file)
|
| 83 |
+
count = pdfReader.numPages
|
| 84 |
+
all_text = ""
|
| 85 |
+
for i in range(count):
|
| 86 |
+
page = pdfReader.getPage(i)
|
| 87 |
+
all_text += page.extractText()
|
| 88 |
+
|
| 89 |
+
return all_text
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def extract_text_from_file(file):
|
| 93 |
+
|
| 94 |
+
'''Extract text from uploaded file'''
|
| 95 |
+
|
| 96 |
+
# read text file
|
| 97 |
+
if file.type == "text/plain":
|
| 98 |
+
# To convert to a string based IO:
|
| 99 |
+
stringio = StringIO(file.getvalue().decode("utf-8"))
|
| 100 |
+
|
| 101 |
+
# To read file as string:
|
| 102 |
+
file_text = stringio.read()
|
| 103 |
+
|
| 104 |
+
# read pdf file
|
| 105 |
+
elif file.type == "application/pdf":
|
| 106 |
+
file_text = extract_pdf(file)
|
| 107 |
+
|
| 108 |
+
# read docx file
|
| 109 |
+
elif (
|
| 110 |
+
file.type
|
| 111 |
+
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 112 |
+
):
|
| 113 |
+
file_text = docx2txt.process(file)
|
| 114 |
+
|
| 115 |
+
return file_text
|
| 116 |
+
|
| 117 |
+
def summary_downloader(raw_text):
|
| 118 |
+
|
| 119 |
+
b64 = base64.b64encode(raw_text.encode()).decode()
|
| 120 |
+
new_filename = "new_text_file_{}_.txt".format(time_str)
|
| 121 |
+
st.markdown("#### Download Summary as a File ###")
|
| 122 |
+
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
| 123 |
+
st.markdown(href,unsafe_allow_html=True)
|
| 124 |
+
|
| 125 |
+
@st.cache(allow_output_mutation=True)
|
| 126 |
+
def facebook_model():
|
| 127 |
+
|
| 128 |
+
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
|
| 129 |
+
return summarizer
|
| 130 |
+
|
| 131 |
+
@st.cache(allow_output_mutation=True)
|
| 132 |
+
def schleifer_model():
|
| 133 |
+
|
| 134 |
+
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
|
| 135 |
+
return summarizer
|
| 136 |
+
|
| 137 |
+
#Streamlit App
|
| 138 |
+
|
| 139 |
+
st.title("Article Text and Link Extractive Summarizer 📝")
|
| 140 |
+
|
| 141 |
+
model_type = st.sidebar.selectbox(
|
| 142 |
+
"Model type", options=["Facebook-Bart", "Sshleifer-DistilBart"]
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
st.markdown(
|
| 146 |
+
"Model Source: [Facebook-Bart-large-CNN](https://huggingface.co/facebook/bart-large-cnn) and [Sshleifer-distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
st.markdown(
|
| 150 |
+
"""The app supports extractive summarization which aims to identify the salient information that is then extracted and grouped together to form a concise summary.
|
| 151 |
+
For documents or text that is more than 500 words long, the app will divide the text into chunks and summarize each chunk.
|
| 152 |
+
There are two models available to choose from:""")
|
| 153 |
+
|
| 154 |
+
st.markdown("""
|
| 155 |
+
- Facebook-Bart, trained on large [CNN and Daily Mail](https://huggingface.co/datasets/cnn_dailymail) news articles.
|
| 156 |
+
- Sshleifer-Distilbart, which is a distilled (smaller) version of the large Bart model."""
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
st.markdown("""Please do note that the model will take longer to generate summaries for documents that are too long.""")
|
| 160 |
+
|
| 161 |
+
st.markdown(
|
| 162 |
+
"The app only ingests the below formats for summarization task:"
|
| 163 |
+
)
|
| 164 |
+
st.markdown(
|
| 165 |
+
"""- Raw text entered in text box.
|
| 166 |
+
- URL of an article to be summarized.
|
| 167 |
+
- Documents with .txt, .pdf or .docx file formats."""
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
st.markdown("---")
|
| 171 |
+
|
| 172 |
+
url_text = st.text_input("Please Enter a url here")
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
st.markdown(
|
| 176 |
+
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
| 177 |
+
unsafe_allow_html=True,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
plain_text = st.text_input("Please Paste/Enter plain text here")
|
| 181 |
+
|
| 182 |
+
st.markdown(
|
| 183 |
+
"<h3 style='text-align: center; color: red;'>OR</h3>",
|
| 184 |
+
unsafe_allow_html=True,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
upload_doc = st.file_uploader(
|
| 188 |
+
"Upload a .txt, .pdf, .docx file for summarization"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
is_url = validators.url(url_text)
|
| 192 |
+
|
| 193 |
+
if is_url:
|
| 194 |
+
# complete text, chunks to summarize (list of sentences for long docs)
|
| 195 |
+
article_title,chunks = article_text_extractor(url=url_text)
|
| 196 |
+
|
| 197 |
+
elif upload_doc:
|
| 198 |
+
|
| 199 |
+
clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
|
| 200 |
+
|
| 201 |
+
else:
|
| 202 |
+
|
| 203 |
+
clean_text = preprocess_plain_text(plain_text)
|
| 204 |
+
|
| 205 |
+
summarize = st.button("Summarize")
|
| 206 |
+
|
| 207 |
+
# called on toggle button [summarize]
|
| 208 |
+
if summarize:
|
| 209 |
+
if model_type == "Facebook-Bart":
|
| 210 |
+
if is_url:
|
| 211 |
+
text_to_summarize = chunks
|
| 212 |
+
else:
|
| 213 |
+
text_to_summarize = clean_text
|
| 214 |
+
|
| 215 |
+
with st.spinner(
|
| 216 |
+
text="Loading Facebook-Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
| 217 |
+
):
|
| 218 |
+
summarizer_model = facebook_model()
|
| 219 |
+
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
| 220 |
+
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 221 |
+
|
| 222 |
+
elif model_type == "Sshleifer-DistilBart":
|
| 223 |
+
if is_url:
|
| 224 |
+
text_to_summarize = chunks
|
| 225 |
+
else:
|
| 226 |
+
text_to_summarize = clean_text
|
| 227 |
+
|
| 228 |
+
with st.spinner(
|
| 229 |
+
text="Loading Sshleifer-DistilBart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
|
| 230 |
+
):
|
| 231 |
+
summarizer_model = schleifer_model()
|
| 232 |
+
summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
|
| 233 |
+
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
|
| 234 |
+
|
| 235 |
+
# final summarized output
|
| 236 |
+
st.subheader("Summarized text")
|
| 237 |
+
|
| 238 |
+
if is_url:
|
| 239 |
+
|
| 240 |
+
# view summarized text (expander)
|
| 241 |
+
st.markdown(f"Article title: {article_title}")
|
| 242 |
+
|
| 243 |
+
st.write(summarized_text)
|
| 244 |
+
|
| 245 |
+
summary_downloader(summarized_text)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# In[ ]:
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|