Update pages/1_Earnings_Sentiment_Analysis_π_.py
Browse files
pages/1_Earnings_Sentiment_Analysis_π_.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
st.set_page_config(page_title="Earnings Sentiment Analysis", page_icon="π")
|
| 4 |
st.sidebar.header("Sentiment Analysis")
|
|
@@ -11,6 +14,89 @@ st.subheader(title)
|
|
| 11 |
|
| 12 |
earnings_passages = results['text']
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
with open('earnings.txt','w') as f:
|
| 15 |
f.write(earnings_passages)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly_express as px
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
|
| 6 |
st.set_page_config(page_title="Earnings Sentiment Analysis", page_icon="π")
|
| 7 |
st.sidebar.header("Sentiment Analysis")
|
|
|
|
| 14 |
|
| 15 |
earnings_passages = results['text']
|
| 16 |
|
| 17 |
+
with st.expander("See Transcribed Earnings Text"):
|
| 18 |
+
st.write(earnings_passages)
|
| 19 |
+
|
| 20 |
with open('earnings.txt','w') as f:
|
| 21 |
f.write(earnings_passages)
|
| 22 |
|
| 23 |
+
with open('earnings.txt','r') as f:
|
| 24 |
+
earnings_passages = f.read()
|
| 25 |
+
|
| 26 |
+
earnings_sentiment, earnings_sentences = sent_pipe(earnings_passages)
|
| 27 |
+
|
| 28 |
+
## Save to a dataframe for ease of visualization
|
| 29 |
+
sen_df = pd.DataFrame(earnings_sentiment)
|
| 30 |
+
sen_df['text'] = earnings_sentences
|
| 31 |
+
grouped = pd.DataFrame(sen_df['label'].value_counts()).reset_index()
|
| 32 |
+
grouped.columns = ['sentiment','count']
|
| 33 |
+
|
| 34 |
+
# Display number of positive, negative and neutral sentiments
|
| 35 |
+
fig = px.bar(grouped, x='sentiment', y='count', color='sentiment', color_discrete_map={"Negative":"firebrick","Neutral":\
|
| 36 |
+
"navajowhite","Positive":"darkgreen"},\
|
| 37 |
+
title='Earnings Sentiment')
|
| 38 |
+
|
| 39 |
+
fig.update_layout(
|
| 40 |
+
showlegend=False,
|
| 41 |
+
autosize=True,
|
| 42 |
+
margin=dict(
|
| 43 |
+
l=50,
|
| 44 |
+
r=50,
|
| 45 |
+
b=50,
|
| 46 |
+
t=50,
|
| 47 |
+
pad=4
|
| 48 |
+
)
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
st.plotly_chart(fig)
|
| 52 |
+
|
| 53 |
+
## Display sentiment score
|
| 54 |
+
pos_perc = grouped[grouped['sentiment']=='Positive']['count'].iloc[0]*100/sen_df.shape[0]
|
| 55 |
+
neg_perc = grouped[grouped['sentiment']=='Negative']['count'].iloc[0]*100/sen_df.shape[0]
|
| 56 |
+
neu_perc = grouped[grouped['sentiment']=='Neutral']['count'].iloc[0]*100/sen_df.shape[0]
|
| 57 |
+
|
| 58 |
+
sentiment_score = neu_perc+pos_perc-neg_perc
|
| 59 |
+
|
| 60 |
+
fig = go.Figure()
|
| 61 |
+
|
| 62 |
+
fig.add_trace(go.Indicator(
|
| 63 |
+
mode = "delta",
|
| 64 |
+
value = sentiment_score,
|
| 65 |
+
domain = {'row': 1, 'column': 1}))
|
| 66 |
+
|
| 67 |
+
fig.update_layout(
|
| 68 |
+
template = {'data' : {'indicator': [{
|
| 69 |
+
'title': {'text': "Sentiment score"},
|
| 70 |
+
'mode' : "number+delta+gauge",
|
| 71 |
+
'delta' : {'reference': 50}}]
|
| 72 |
+
}},
|
| 73 |
+
autosize=False,
|
| 74 |
+
width=400,
|
| 75 |
+
height=500,
|
| 76 |
+
margin=dict(
|
| 77 |
+
l=20,
|
| 78 |
+
r=50,
|
| 79 |
+
b=50,
|
| 80 |
+
pad=4
|
| 81 |
+
)
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
## Display negative sentence locations
|
| 85 |
+
fig = px.scatter(sen_df, y='label', color='label', size='score', hover_data=['text'], color_discrete_map={"Negative":"firebrick","Neutral":"navajowhite","Positive":"darkgreen"}, title='Sentiment Score Distribution')
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
fig.update_layout(
|
| 89 |
+
showlegend=False,
|
| 90 |
+
autosize=False,
|
| 91 |
+
width=1000,
|
| 92 |
+
height=500,
|
| 93 |
+
margin=dict(
|
| 94 |
+
l=50,
|
| 95 |
+
r=50,
|
| 96 |
+
b=50,
|
| 97 |
+
t=50,
|
| 98 |
+
pad=4
|
| 99 |
+
)
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
st.plotly_chart(fig)
|