import os import streamlit as st from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings from langchain.vectorstores.faiss import FAISS from langchain.chains import ChatVectorDBChain from huggingface_hub import snapshot_download from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) st.set_page_config(page_title="CFA Level 1", page_icon="πŸ“–") #### sidebar section 1 #### with st.sidebar: book = st.radio("Choose an Embedding Model: ", ["Instruct", "Sbert"] ) #load embedding models @st.experimental_singleton(show_spinner=True) def load_embedding_models(model): if model == 'Sbert': model_sbert = "sentence-transformers/all-mpnet-base-v2" emb = HuggingFaceEmbeddings(model_name=model_sbert) elif model == 'Instruct': embed_instruction = "Represent the financial paragraph for document retrieval: " query_instruction = "Represent the question for retrieving supporting documents: " model_instr = "hkunlp/instructor-large" emb = HuggingFaceInstructEmbeddings(model_name=model_instr, embed_instruction=embed_instruction, query_instruction=query_instruction) return emb st.title(f"Talk to CFA Level 1 Book") st.markdown(f"#### Have a conversation with the CFA Curriculum by the CFA Institute πŸ™Š") embeddings = load_embedding_models(book) ##### functionss #### @st.experimental_singleton(show_spinner=False) def load_vectorstore(_embeddings): # download from hugging face cache_dir="cfa_level_1_cache" snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings", repo_type="dataset", revision="main", allow_patterns="CFA_Level_1/*", cache_dir=cache_dir, ) target_dir = "CFA_Level_1" # Walk through the directory tree recursively for root, dirs, files in os.walk(cache_dir): # Check if the target directory is in the list of directories if target_dir in dirs: # Get the full path of the target directory target_path = os.path.join(root, target_dir) print(target_path) # load faiss docsearch = FAISS.load_local(folder_path=target_path, embeddings=_embeddings) return docsearch @st.experimental_memo(show_spinner=False) def load_prompt(): system_template="""You are an expert in finance, economics, investing, ethics, derivatives and markets. Use the following pieces of context to answer the users question. If you don't know the answer, just say that you don't know, don't try to make up an answer. Provide a source reference. ALWAYS return a "sources" part in your answer. The "sources" part should be a reference to the source of the documents from which you got your answer. List all sources used The output should be a markdown code snippet formatted in the following schema: ```json {{ answer: is foo sources: xyz }} ``` Begin! ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}") ] prompt = ChatPromptTemplate.from_messages(messages) return prompt @st.experimental_singleton(show_spinner=False) def load_chain(): llm = ChatOpenAI(temperature=0) qa = ChatVectorDBChain.from_llm(llm, load_vectorstore(embeddings), qa_prompt=load_prompt(), return_source_documents=True) return qa def get_answer(question): chain = load_chain() result = chain({"query": question}) answer = result["result"] # pages unique_sources = set() for item in result['source_documents']: unique_sources.add(item.metadata['page']) unique_pages = "" for item in unique_sources: unique_pages += str(item) + ", " # will look like 1, 2, 3, pages = unique_pages[:-2] # removes the last comma and space # source text full_source = "" for item in result['source_documents']: full_source += f"- **Page: {item.metadata['page']}**" + "\n" + item.page_content + "\n\n" # will look like: # - Page: {number} # {extracted text from book} extract = full_source return answer, pages, extract ##### sidebar section 2 #### api_key = os.environ["OPENAI_API_KEY"] ##### main #### user_input = st.text_input("Your question", "What is an MBS and who are the main issuer and investors of the MBS market?", key="input") col1, col2 = st.columns([10, 1]) # show question col1.write(f"**You:** {user_input}") # ask button to the right of the displayed question ask = col2.button("Ask", type="primary") if ask: with st.spinner("this can take about a minute for your first question because some models have to be downloaded πŸ₯ΊπŸ‘‰πŸ»πŸ‘ˆπŸ»"): try: answer, pages, extract = get_answer(question=user_input) except Exception as e: st.write(f"Error with Download: {e}") st.stop() st.write(f"{answer}") # sources with st.expander(label = f"From pages: {pages}", expanded = False): st.markdown(extract)