CFA_Level_1_GPT / app.py
nickmuchi's picture
Update app.py
44ef0b2
raw
history blame
6.71 kB
import os
import streamlit as st
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from huggingface_hub import snapshot_download
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.chains.llm import LLMChain
from langchain.callbacks.base import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
st.set_page_config(page_title="CFA Level 1", page_icon="πŸ“–")
#Load API Key
api_key = os.environ["OPENAI_API_KEY"]
#### sidebar section 1 ####
with st.sidebar:
book = st.radio("Embedding Model: ",
["Sbert"]
)
#load embedding models
@st.experimental_singleton(show_spinner=True)
def load_embedding_models(model):
if model == 'Sbert':
model_sbert = "sentence-transformers/all-mpnet-base-v2"
emb = HuggingFaceEmbeddings(model_name=model_sbert)
elif model == 'Instruct':
embed_instruction = "Represent the financial paragraph for document retrieval: "
query_instruction = "Represent the question for retrieving supporting documents: "
model_instr = "hkunlp/instructor-large"
emb = HuggingFaceInstructEmbeddings(model_name=model_instr,
embed_instruction=embed_instruction,
query_instruction=query_instruction)
return emb
st.title(f"Talk to CFA Level 1 Book")
st.markdown("#### Have a conversation with the CFA Curriculum by the CFA Institute πŸ™Š")
embeddings = load_embedding_models(book)
##### functionss ####
@st.experimental_singleton(show_spinner=False)
def load_vectorstore(_embeddings):
# download from hugging face
cache_dir="cfa_level_1_cache"
snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
repo_type="dataset",
revision="main",
allow_patterns="CFA_Level_1/*",
cache_dir=cache_dir,
)
target_dir = "CFA_Level_1"
# Walk through the directory tree recursively
for root, dirs, files in os.walk(cache_dir):
# Check if the target directory is in the list of directories
if target_dir in dirs:
# Get the full path of the target directory
target_path = os.path.join(root, target_dir)
print(target_path)
# load faiss
docsearch = FAISS.load_local(folder_path=target_path, embeddings=_embeddings)
return docsearch
@st.experimental_memo(show_spinner=False)
def load_prompt():
system_template="""You are an expert in finance, economics, investing, ethics, derivatives and markets.
Use the following pieces of context to answer the users question. If you don't know the answer,
just say that you don't know, don't try to make up an answer. Provide a source reference.
ALWAYS return a "sources" part in your answer.
The "sources" part should be a reference to the source of the documents from which you got your answer. List all sources used
You can only use other sources to answer the question if the given context does not have sufficient and relevant information to answer.
The output should be a markdown code snippet formatted in the following schema:
```json
{{
answer: is foo
sources: xyz
}}
```
Begin!
----------------
{context}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
return prompt
@st.experimental_singleton(show_spinner=False)
def load_chain():
'''Load langchain Conversational Retrieval Chain'''
cfa_db = load_vectorstore(embeddings)
llm = ChatOpenAI(temperature=0)
streaming_llm = ChatOpenAI(streaming=True,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
verbose=True,
temperature=0)
question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(streaming_llm, chain_type="stuff", prompt=load_prompt())
qa = ConversationalRetrievalChain(
retriever=vectorstore.as_retriever(),
combine_docs_chain=doc_chain,
question_generator=question_generator,
return_source_documents=True)
return qa
chat_history = []
def get_answer(question):
'''Generate an answer from the chain'''
chain = load_chain()
result = chain({"question": question, "chat_history": chat_history})
answer = result["answer"]
# pages
unique_sources = set()
for item in result['source_documents']:
unique_sources.add(item.metadata['source'].split(',')[1])
unique_pages = ""
for item in unique_sources:
unique_pages += str(item) + ", "
# will look like 1, 2, 3,
pages = unique_pages[:-2] # removes the last comma and space
# source text
full_source = ""
for item in result['source_documents']:
full_source += f"- **{item.metadata['source']}**" + "\n" + item.page_content + "\n\n"
# will look like:
# - Page: {number}
# {extracted text from book}
extract = full_source
return answer, pages, extract
##### main ####
user_input = st.text_area("Your question", "What is an MBS and who are the main issuers and investors of the MBS market?", key="input")
col1, col2 = st.columns([10, 1])
# show question
col1.write(f"**You:** {user_input}")
# ask button to the right of the displayed question
ask = col2.button("Ask", type="primary")
if ask:
with st.spinner("this can take about a minute for your first question because some models have to be downloaded πŸ₯ΊπŸ‘‰πŸ»πŸ‘ˆπŸ»"):
try:
answer, pages, extract = get_answer(question=user_input)
except Exception as e:
st.write(f"Error with Download: {e}")
st.stop()
st.write(f"{answer}")
# sources
with st.expander(label = f"From: {pages}", expanded = False):
st.markdown(extract)