File size: 6,005 Bytes
3e8fafc
 
 
4dfafae
3e8fafc
a3155e0
3e8fafc
a3155e0
 
 
 
 
 
 
 
 
 
 
 
 
3e8fafc
4dfafae
3e8fafc
7345394
 
3e8fafc
 
 
60f3227
 
3e8fafc
4dfafae
 
 
 
 
 
 
 
3e8fafc
4dfafae
 
 
 
 
 
 
3e8fafc
4dfafae
3e8fafc
4dfafae
ce9e8da
3e8fafc
 
4dfafae
3e8fafc
 
 
6fb2144
3e8fafc
4dfafae
 
3e8fafc
 
6fb2144
3e8fafc
 
 
b9d30a5
3e8fafc
 
 
 
 
 
 
 
b9d30a5
3e8fafc
 
6fb2144
3e8fafc
 
 
 
 
4dfafae
 
 
02fc0e3
34d8a94
02fc0e3
cf96c2e
02fc0e3
4dfafae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8fafc
 
 
 
4dfafae
1d13bf0
4dfafae
 
1d13bf0
4dfafae
5cd3910
 
3e8fafc
4dfafae
3e8fafc
1d13bf0
3e8fafc
 
7345394
61d5ed8
3e8fafc
7345394
3e8fafc
cc8d48f
3e8fafc
 
 
 
e68d940
3e8fafc
 
 
 
 
 
 
 
 
 
 
e68d940
3e8fafc
 
 
 
 
 
 
 
 
 
ce9e8da
3e8fafc
 
 
 
 
 
 
 
 
 
 
 
4dfafae
 
 
f6d5698
a3155e0
4dfafae
 
 
3e8fafc
 
78c0489
3e8fafc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import streamlit as st

from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from langchain.chains import ChatVectorDBChain
from huggingface_hub import snapshot_download
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)


st.set_page_config(page_title="CFA Level 1", page_icon="πŸ“–")

#Load API Key
api_key = os.environ["OPENAI_API_KEY"]   

#### sidebar section 1 ####
with st.sidebar:
    book = st.radio("Embedding Model: ",
                   ["Sbert"]
                   )
  
#load embedding models
@st.experimental_singleton(show_spinner=True)
def load_embedding_models(model):

    if model == 'Sbert':
        model_sbert = "sentence-transformers/all-mpnet-base-v2"
        emb = HuggingFaceEmbeddings(model_name=model_sbert)

    elif model == 'Instruct':
        embed_instruction = "Represent the financial paragraph for document retrieval: "
        query_instruction = "Represent the question for retrieving supporting documents: "
        model_instr = "hkunlp/instructor-large"
        emb = HuggingFaceInstructEmbeddings(model_name=model_instr,
                                                 embed_instruction=embed_instruction,
                                                 query_instruction=query_instruction)

    return emb

st.title(f"Talk to CFA Level 1 Book")
st.markdown("#### Have a conversation with the CFA Curriculum by the CFA Institute πŸ™Š")


embeddings = load_embedding_models(book)

##### functionss ####
@st.experimental_singleton(show_spinner=False)
def load_vectorstore(_embeddings):
    # download from hugging face
    cache_dir="cfa_level_1_cache"
    snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
                                    repo_type="dataset",
                                    revision="main",
                                    allow_patterns="CFA_Level_1/*",
                                    cache_dir=cache_dir,
                                    )

    target_dir = "CFA_Level_1"

    # Walk through the directory tree recursively
    for root, dirs, files in os.walk(cache_dir):
        # Check if the target directory is in the list of directories
        if target_dir in dirs:
            # Get the full path of the target directory
            target_path = os.path.join(root, target_dir)

            print(target_path)

    # load faiss
    docsearch = FAISS.load_local(folder_path=target_path, embeddings=_embeddings)

    return docsearch


@st.experimental_memo(show_spinner=False)
def load_prompt():
    system_template="""You are an expert in finance, economics, investing, ethics, derivatives and markets. 
    Use the following pieces of context to answer the users question. If you don't know the answer, 
    just say that you don't know, don't try to make up an answer. Provide a source reference.
    ALWAYS return a "sources" part in your answer.
    The "sources" part should be a reference to the source of the documents from which you got your answer. List all sources used

    You can only use other sources to answer the question if the given context does not have sufficient and relevant information to answer.
    
    The output should be a markdown code snippet formatted in the following schema:
    ```json
    {{
    answer: is foo
    sources: xyz
    }}
    ```
    Begin!
    ----------------
    {context}"""
    messages = [
        SystemMessagePromptTemplate.from_template(system_template),
        HumanMessagePromptTemplate.from_template("{question}")
    ]
    prompt = ChatPromptTemplate.from_messages(messages)

    return prompt

    
@st.experimental_singleton(show_spinner=False)
def load_chain():
    llm = ChatOpenAI(temperature=0)
    cfa_db = load_vectorstore(embeddings)

    qa = ChatVectorDBChain.from_llm(llm, 
                                    cfa_db,
                                    qa_prompt=load_prompt(),
                                    return_source_documents=True,
                                   k=3)
    
    return qa

chat_history = []

def get_answer(question):
    '''Generate an answer from the chain'''

    chain = load_chain()
    result = chain({"question": question, "chat_history": chat_history})

    answer = result["answer"]
    
    # pages
    unique_sources = set()
    for item in result['source_documents']:
        unique_sources.add(item.metadata['source'].split(',')[1])

    unique_pages = ""
    for item in unique_sources:
        unique_pages += str(item) + ", "

    # will look like 1, 2, 3,
    pages = unique_pages[:-2] # removes the last comma and space

    # source text
    full_source = ""
    for item in result['source_documents']:
        full_source += f"- **{item.metadata['source']}**" + "\n" + item.page_content + "\n\n"

    # will look like:
    # - Page: {number}
    #  {extracted text from book}
    extract = full_source

    return answer, pages, extract


##### main ####
user_input = st.text_area("Your question", "What is an MBS and who are the main issuers and investors of the MBS market?", key="input")

col1, col2 = st.columns([10, 1])

# show question
col1.write(f"**You:** {user_input}")

# ask button to the right of the displayed question
ask = col2.button("Ask", type="primary")


if ask:

    with st.spinner("this can take about a minute for your first question because some models have to be downloaded πŸ₯ΊπŸ‘‰πŸ»πŸ‘ˆπŸ»"):
        try:
            answer, pages, extract = get_answer(question=user_input)
        except Exception as e:
            st.write(f"Error with Download: {e}")
            st.stop()

    st.write(f"{answer}")

    # sources
    with st.expander(label = f"From: {pages}", expanded = False):
        st.markdown(extract)