import gradio as gr import pandas as pd import numpy as np import onnxruntime as ort import sys from pathlib import Path sys.path.append("rd2l_pred") from training_data_prep import list_format, modification, league_money, df_gen from feature_engineering import heroes, hero_information # Global variables for model and feature columns MODEL = None def load_model(): """Load the ONNX model""" global MODEL try: model_path = Path("model/rd2l_forest.onnx") if not model_path.exists(): return "Model file not found at: " + str(model_path) MODEL = ort.InferenceSession(str(model_path)) return "Model loaded successfully" except Exception as e: return f"Error loading model: {str(e)}" def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5): """Process player data with correct feature structure""" try: # Clean player ID from URL if needed if "/" in player_id: player_id = player_id.split("/")[-1] # Create initial data structure with basic features data = { 'mmr': float(mmr), 'p1': int(comf_1), 'p2': int(comf_2), 'p3': int(comf_3), 'p4': int(comf_4), 'p5': int(comf_5), 'count': 0, 'mean': 0, 'std': 0, 'min': 0, 'max': 0, 'sum': 0, 'total_games_played': 0, 'total_winrate': 0 } # Add hero-specific features for i in range(1, 139): # Add all possible hero IDs data[f'games_{i}'] = 0 data[f'winrate_{i}'] = 0 # Get hero statistics from OpenDota try: hero_stats = hero_information(player_id) data['total_games_played'] = hero_stats['total_games_played'] data['total_winrate'] = hero_stats['total_winrate'] # Update hero-specific stats for key, value in hero_stats.items(): if key in data: data[key] = value except Exception as e: print(f"Warning - Error fetching hero data: {str(e)}") # Convert to DataFrame df = pd.DataFrame([data]) print(f"Processed data shape: {df.shape}") print(f"Number of features: {len(df.columns)}") print(f"First few columns: {list(df.columns)[:5]}") return df except Exception as e: return f"Error processing player data: {str(e)}" def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5): """Main prediction function for Gradio interface""" try: # Check if model is loaded if MODEL is None: result = load_model() if not result.startswith("Model loaded"): return result # Process input data processed_data = process_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5) if isinstance(processed_data, str): # Error occurred return processed_data # Make prediction try: input_name = MODEL.get_inputs()[0].name prediction = MODEL.run(None, {input_name: processed_data.values.astype(np.float32)})[0] predicted_cost = round(float(prediction[0]), 2) except Exception as e: return f"Error during prediction: {str(e)}\nProcessed data shape: {processed_data.shape}" return f"""Predicted Cost: {predicted_cost} Player Details: - MMR: {mmr} - Position Comfort: * Pos 1: {comf_1} * Pos 2: {comf_2} * Pos 3: {comf_3} * Pos 4: {comf_4} * Pos 5: {comf_5} Note: This prediction is based on historical data and player statistics from OpenDota.""" except Exception as e: return f"Error in prediction pipeline: {str(e)}" # Create Gradio interface demo = gr.Interface( fn=predict_cost, inputs=[ gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff", placeholder="Enter player ID or full profile URL"), gr.Number(label="MMR", value=3000), gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"), gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"), gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"), gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"), gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)") ], examples=[ ["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1] ], outputs=gr.Textbox(label="Prediction Results"), title="RD2L Player Cost Predictor", description="""This tool predicts the auction cost for RD2L players based on their MMR, position comfort levels, and historical performance data from OpenDota. Enter a player's OpenDota ID or profile URL along with their current stats to get a predicted cost.""", article="""### How it works - The predictor uses machine learning trained on historical RD2L draft data - Player statistics are fetched from OpenDota API - Position comfort levels range from 1 (least comfortable) to 5 (most comfortable) - Predictions are based on both current stats and historical performance""" ) if __name__ == "__main__": print("===== Application Startup =====") print(load_model()) demo.launch(server_name="0.0.0.0")