import gradio as gr import sys sys.path.append("rd2l_pred") from training_data_prep import list_format, modification, league_money, df_gen def greet(name): return "Hello " + name + "!!" def fetch_data(user_input): # We need to generate the inputs for the sheet using hugging face # We also need to load the money values from the generated csv file df_gen(draft, league_money(captains, data_type), data_type) return # Needs a text input for dotabuff link demo = gr.Interface(fn=greet, inputs="textbox", outputs="text") demo = gr.Interface( fn=greet, inputs=[ "textbox" # gr.Image(type="filepath"), # gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"), # gr.Checkbox(label="Randomize inputs?"), # gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"), # gr.Slider(0, 1, value=0.5, label="Center X"), # gr.Slider(0, 1, value=0.5, label="Center Y"), # gr.Slider(0, 1, value=0.5, label="Strength"), # gr.Slider(0, 1, value=0.5, label="Edge Smoothness"), # gr.Slider(0, 0.5, value=0.1, label="Center Smoothness") # gr.Checkbox(label="Reverse Gradient Direction"), ], # examples=[ # [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], # [np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], # [np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], # [np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5] # ], outputs=[ "text" # gr.Image(label="Transformed Image"), # gr.Image(label="bulge_model Model Classification"), # gr.Image(label="yolov8n Model Classification"), # gr.Image(label="yolov8x Model Classification"), # gr.Label(), # gr.Label(), # gr.Image(label="Gradient Vector Field"), # gr.Image(label="Inverse Gradient"), # gr.Image(label="Inverted Vector Field"), # gr.Image(label="Fixed Image") ], title="RD2L Pricing Prediction", article="Uhhhhh this is the article", description="Uhhhhh this is the description" ) demo.launch()