import gradio as gr import pandas as pd import sys sys.path.append("rd2l_pred") from training_data_prep import list_format, modification, league_money, df_gen from feature_engineering import heroes, hero_information def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5): player_id = user_id.split("/")[-1] series = {"player_id" : player_id, "mmr" : mmr, "p1" : comf_1, "p2" : comf_2, "p3" : comf_3, "p4" : comf_4, "p5" : comf_5} money = pd.read_csv("result_money.csv") print() print(f"Reading player {player_id}. Starting now") print(money) print(money.values) for item in money.values: series.update({item[0] : float(item[1])}) print("Corrected Series") print(series) d = pd.Series(series) print(d) # This the original section used to add the money section to the series. # d = d.assign(count=lambda x: money[player_season].loc['count'], mean=lambda x: money[player_season].loc['mean'], std=lambda x: money[player_season].loc['std'], min=lambda x: money[player_season].loc['min'], max=lambda x: money[player_season].loc['max'], sum=lambda x: money[player_season].loc['sum']) # We need to generate the inputs for the sheet using hugging face # We also need to load the money values from the generated csv file # df_gen(draft, league_money(captains, data_type), data_type) print(f"Done reading player {player_id}") print() return player_id demo = gr.Interface.load("https://huggingface.co/nick-leland/RD2L_Random_Forest") # demo = gr.Interface( # fn=fetch_data, # inputs=[ # gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff"), # gr.Textbox(label="MMR"), # gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 1)"), # gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 2)"), # gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"), # gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"), # gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)") # ], # # examples=[ # # [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], # # [np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], # # [np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5], # # [np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5] # # ], # outputs=[ # "text" # ], # title="RD2L Pricing Prediction", # article="Uhhhhh this is the article", # description="Uhhhhh this is the description" # ) demo.launch()