rd2l_prediction / app.py
nick-leland's picture
Weekend work on the gradio interface
7409f0d
raw
history blame
3.53 kB
import gradio as gr
import pandas as pd
import sys
sys.path.append("rd2l_pred")
from training_data_prep import list_format, modification, league_money, df_gen
from feature_engineering import heroes, hero_information
def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
player_id = user_id.split("/")[-1]
series = {"player_id" : player_id, "mmr" : mmr, "p1" : comf_1, "p2" : comf_2, "p3" : comf_3, "p4" : comf_4, "p5" : comf_5}
money = pd.read_csv("result_money.csv")
print(money)
print(money.values)
for item in money.values:
series.update({item[0] : float(item[1])})
print("Corrected Series")
print(series)
d = pd.Series(series)
print(d)
# This the original section used to add the money section to the series.
# d = d.assign(count=lambda x: money[player_season].loc['count'], mean=lambda x: money[player_season].loc['mean'], std=lambda x: money[player_season].loc['std'], min=lambda x: money[player_season].loc['min'], max=lambda x: money[player_season].loc['max'], sum=lambda x: money[player_season].loc['sum'])
# We need to generate the inputs for the sheet using hugging face
# We also need to load the money values from the generated csv file
# df_gen(draft, league_money(captains, data_type), data_type)
return player_id
demo = gr.Interface(
fn=fetch_data,
inputs=[
gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff"),
gr.Textbox(label="MMR"),
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 1)"),
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 2)"),
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"),
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"),
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)")
# gr.Image(type="filepath"),
# gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
# gr.Checkbox(label="Randomize inputs?"),
# gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
# gr.Slider(0, 1, value=0.5, label="Center X"),
# gr.Slider(0, 1, value=0.5, label="Center Y"),
# gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
# examples=[
# [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
# [np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
# [np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
# [np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
# ],
outputs=[
"text"
# gr.Image(label="Transformed Image"),
# gr.Image(label="bulge_model Model Classification"),
# gr.Image(label="yolov8n Model Classification"),
# gr.Image(label="yolov8x Model Classification"),
# gr.Label(),
# gr.Label(),
# gr.Image(label="Gradient Vector Field"),
# gr.Image(label="Inverse Gradient"),
# gr.Image(label="Inverted Vector Field"),
# gr.Image(label="Fixed Image")
],
title="RD2L Pricing Prediction",
article="Uhhhhh this is the article",
description="Uhhhhh this is the description"
)
demo.launch()