rd2l_prediction / app.py
nick-leland's picture
Production change
67bbd16
raw
history blame
10.7 kB
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from feature_engineering import heroes, hero_information
# Define expected columns
EXPECTED_COLUMNS = ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum',
'total_games_played', 'total_winrate']
# Add games columns
games_ids = list(range(1, 24)) + [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 119, 120, 121, 123, 126,
128, 129, 131, 135, 136, 137, 138, 145]
EXPECTED_COLUMNS.extend([f'games_{i}' for i in games_ids])
EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])
def load_reference_data(player_id):
"""Load reference prediction data and input features"""
try:
# Read the full CSV to get both input features and prediction
ref_df = pd.read_csv(f"{player_id}.csv", encoding='utf-8', index_col=0)
# Remove the prediction row and convert to a proper format
features = ref_df[ref_df.index != 'Predicted_Cost'].iloc[:, 0]
prediction = ref_df.loc['Predicted_Cost', f"{player_id}_S34"]
print("\nReference data loaded:")
for idx in ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum']:
if idx in features.index:
print(f"{idx}: {features[idx]}")
return features, float(prediction)
except Exception as e:
print(f"Could not load reference data: {e}")
return None, None
def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Creates a DataFrame in the expected format for the model"""
try:
# Extract player_id from URL if needed
player_id = user_id.split("/")[-1] if "/" in user_id else user_id
# Create initial data dictionary with zeros for all columns
data = {col: 0 for col in EXPECTED_COLUMNS}
# Fill in the basic features
data.update({
'mmr': float(mmr),
'p1': int(comf_1),
'p2': int(comf_2),
'p3': int(comf_3),
'p4': int(comf_4),
'p5': int(comf_5),
})
# Get hero statistics using OpenDota API
hero_stats = hero_information(player_id)
# Add hero statistics
if hero_stats is not None:
data['total_games_played'] = hero_stats.get('total_games_played', 0)
data['total_winrate'] = hero_stats.get('total_winrate', 0)
# Fill in the games and winrate columns from hero_stats
for key, value in hero_stats.items():
if key in EXPECTED_COLUMNS:
data[key] = value
# Get statistics from league data
try:
captains_df = pd.read_csv("S34 Draft Sheet - Captains.csv", encoding='utf-8')
bucks_stats = captains_df["Buck's Bucks"].describe()
cents_stats = captains_df["Crub Cents"].describe()
# Print stats for debugging
print("\nLeague Money Statistics:")
print("Buck's Bucks stats:", bucks_stats)
print("Crub Cents stats:", cents_stats)
# Combine stats from both currencies
combined_stats = {
# 'count': bucks_stats['count'] + cents_stats['count'],
'count': 9.0,
# 'mean': (bucks_stats['mean'] + cents_stats['mean']) / 2,
'mean': 489.3333333333333,
# 'std': (bucks_stats['std'] + cents_stats['std']) / 2,
'std': 77.4483698989204,
# 'min': min(bucks_stats['min'], cents_stats['min']),
'min': 352.0,
# 'max': max(bucks_stats['max'], cents_stats['max']),
'max': 593.0,
# 'sum': bucks_stats['count'] * bucks_stats['mean'] + cents_stats['count'] * cents_stats['mean']
'sum': 4404.0
}
print("Combined stats:", combined_stats)
data.update(combined_stats)
except Exception as e:
print(f"Error reading captains data: {e}")
stats = {
'count': 1,
'mean': mmr / 200,
'std': mmr / 400,
'min': mmr / 250,
'max': mmr / 150,
'sum': mmr / 200
}
data.update(stats)
# Convert to DataFrame
df = pd.DataFrame([data])
# Ensure columns are in correct order
df = df[EXPECTED_COLUMNS]
print(f"DataFrame shape: {df.shape}")
print("Missing columns:", set(EXPECTED_COLUMNS) - set(df.columns))
# Print key feature values for debugging
print("\nKey feature values:")
print(f"MMR: {df['mmr'].iloc[0]}")
print(f"Position comfort: {df[['p1', 'p2', 'p3', 'p4', 'p5']].iloc[0].tolist()}")
print(f"Money stats: {df[['count', 'mean', 'std', 'min', 'max', 'sum']].iloc[0].tolist()}")
print(f"Total games: {df['total_games_played'].iloc[0]}")
print(f"Total winrate: {df['total_winrate'].iloc[0]}")
return df
except Exception as e:
print(f"Error in data preparation: {e}")
raise e
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Main prediction function for Gradio interface"""
try:
# Extract player_id for reference data
player_id = user_id.split("/")[-1] if "/" in user_id else user_id
reference_features, reference_prediction = load_reference_data(player_id)
# Prepare the player data
processed_data = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
print("\nComparing processed data with reference:")
if reference_features is not None:
our_data = processed_data.iloc[0]
for idx in ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum']:
our_val = our_data[idx]
ref_val = reference_features[idx] if idx in reference_features.index else "N/A"
print(f"{idx}:")
print(f" Our value: {our_val}")
print(f" Ref value: {ref_val}")
if our_val != ref_val and ref_val != "N/A":
print(f" *** MISMATCH ***")
# Load and use the model
model_path = Path("model/rd2l_forest.onnx")
if not model_path.exists():
return f"Model file not found at: {model_path}"
session = ort.InferenceSession(str(model_path))
# Make prediction
input_name = session.get_inputs()[0].name
prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
print("\nPrediction output:", prediction)
predicted_cost = round(float(prediction[0]), 2)
print("Predicted cost:", predicted_cost)
hero_stats = processed_data.iloc[0]
total_games = hero_stats.get('total_games_played', 'N/A')
total_winrate = hero_stats.get('total_winrate', 'N/A')
comparison = ""
if reference_prediction is not None:
diff = abs(predicted_cost - reference_prediction)
comparison = f"""
Reference Cost: {reference_prediction}
Difference: {diff:.2f} ({(diff/reference_prediction*100):.1f}% {'higher' if predicted_cost > reference_prediction else 'lower'})"""
return f"""Predicted Cost: {predicted_cost}"""
# return f"""Predicted Cost: {predicted_cost}{comparison}
#
# Player Details:
# - MMR: {mmr}
# - Position Comfort:
# * Pos 1: {comf_1}
# * Pos 2: {comf_2}
# * Pos 3: {comf_3}
# * Pos 4: {comf_4}
# * Pos 5: {comf_5}
#
# Player Statistics:
# - Total Games: {total_games}
# - Overall Winrate: {total_winrate:.1%} if isinstance(total_winrate, float) else 'N/A'
#
# Note: This prediction is based on historical data and player statistics from OpenDota."""
#
# except Exception as e:
# return f"Error in prediction pipeline: {str(e)}\n\nDebug info:\n{type(e).__name__}: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_cost,
inputs=[
gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
placeholder="Enter player ID or full profile URL"),
gr.Number(label="MMR", value=3000),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
],
examples=[
["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
],
outputs=gr.Textbox(label="Prediction Results"),
title="RD2L Player Cost Predictor",
description="""This tool predicts the auction cost for RD2L players based on their MMR,
position comfort levels, and historical performance data from OpenDota.
Enter a player's OpenDota ID or profile URL along with their current stats
to get a predicted cost.""",
article="""### How it works
- The predictor uses machine learning trained on historical RD2L draft data
- Player statistics are fetched from OpenDota API
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
- Predictions are based on both current stats and historical performance
### Notes
- MMR should be the player's current solo MMR
- Position comfort should reflect actual role experience
- Predictions are estimates and may vary from actual draft results"""
)
if __name__ == "__main__":
demo.launch()