rd2l_prediction / app.py
nick-leland's picture
Debugging
5c5f11f
raw
history blame
7.99 kB
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from training_data_prep import list_format, modification, league_money, df_gen
from feature_engineering import heroes, hero_information
# Global variables for model and feature columns
MODEL = None
FEATURE_COLUMNS = None
def load_model():
"""Load the ONNX model and get input features"""
global MODEL, FEATURE_COLUMNS
try:
model_path = Path("model/rd2l_forest.onnx")
if not model_path.exists():
return "Model file not found at: " + str(model_path)
MODEL = ort.InferenceSession(str(model_path))
# Load feature columns from prediction data
try:
FEATURE_COLUMNS = pd.read_csv("result_prediction_data_prepped.csv").columns.tolist()
except:
try:
FEATURE_COLUMNS = pd.read_csv("prediction_data_prepped.csv").columns.tolist()
except:
return "Error: Could not find prediction data files to determine feature structure"
return "Model loaded successfully"
except Exception as e:
return f"Error loading model: {str(e)}"
def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Process player data similar to training pipeline"""
try:
# Clean player ID from URL if needed
if "/" in player_id:
player_id = player_id.split("/")[-1]
# Create initial player series
player_data = {
"player_id": player_id,
"mmr": float(mmr),
"p1": int(comf_1),
"p2": int(comf_2),
"p3": int(comf_3),
"p4": int(comf_4),
"p5": int(comf_5)
}
# Read the example row from prediction_data_prepped.csv to get the expected structure
try:
pred_data = pd.read_csv("prediction_data_prepped.csv")
print("\nReference columns from prediction_data_prepped.csv:")
print(sorted(pred_data.columns.tolist()))
print(f"Number of reference columns: {len(pred_data.columns)}")
if not pred_data.empty:
# Get column structure from the first row
for col in pred_data.columns:
if col not in player_data and col != 'Predicted_Cost': # Skip the target variable
player_data[col] = 0
except Exception as e:
print(f"Warning - Error reading prediction data template: {str(e)}")
# Get hero statistics using OpenDota API
try:
hero_stats = hero_information(player_id)
player_data.update(hero_stats.to_dict())
# Add season identifier to match training data format
player_season = f"{player_id}_S34" # Assuming current season is 34
temp_dict = {}
temp_dict[player_season] = 1.0 # Set current season flag to 1.0
player_data.update(temp_dict)
except Exception as e:
print(f"Warning - Error fetching hero data: {str(e)}")
# If hero stats fail, add placeholder values
player_data.update({
"total_games_played": 0,
"total_winrate": 0.0
})
# Convert to DataFrame for consistency with training
df = pd.DataFrame([player_data])
# Print out the columns we have in our processed data
print("\nProcessed data columns:")
print(sorted(df.columns.tolist()))
print(f"Number of processed columns: {len(df.columns)}")
# Find missing columns
expected_cols = set(pred_data.columns) - {'Predicted_Cost'} # Remove target variable
actual_cols = set(df.columns)
missing_cols = expected_cols - actual_cols
extra_cols = actual_cols - expected_cols
if missing_cols:
print("\nMissing columns:")
print(sorted(list(missing_cols)))
if extra_cols:
print("\nExtra columns:")
print(sorted(list(extra_cols)))
# Ensure we have all needed columns and remove any extras
for col in missing_cols:
df[col] = 0
df = df[list(expected_cols)]
print(f"\nFinal number of columns: {len(df.columns)}")
return df
except Exception as e:
return f"Error processing player data: {str(e)}"
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Main prediction function for Gradio interface"""
try:
# Check if model is loaded
if MODEL is None:
result = load_model()
if not result.startswith("Model loaded"):
return result
# Process input data
processed_data = process_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
if isinstance(processed_data, str): # Error occurred
return processed_data
# Print debug information
print("Processed data shape:", processed_data.shape)
print("Processed data columns:", processed_data.columns.tolist())
# Make prediction
try:
input_name = MODEL.get_inputs()[0].name
prediction = MODEL.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
predicted_cost = round(float(prediction[0]), 2)
except Exception as e:
return f"Error during prediction: {str(e)}\nProcessed data shape: {processed_data.shape}"
return f"""Predicted Cost: {predicted_cost}
Player Details:
- MMR: {mmr}
- Position Comfort:
* Pos 1: {comf_1}
* Pos 2: {comf_2}
* Pos 3: {comf_3}
* Pos 4: {comf_4}
* Pos 5: {comf_5}
Note: This prediction is based on historical data and player statistics from OpenDota."""
except Exception as e:
return f"Error in prediction pipeline: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_cost,
inputs=[
gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
placeholder="Enter player ID or full profile URL"),
gr.Number(label="MMR", value=3000),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
],
examples=[
["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
],
outputs=gr.Textbox(label="Prediction Results"),
title="RD2L Player Cost Predictor",
description="""This tool predicts the auction cost for RD2L players based on their MMR,
position comfort levels, and historical performance data from OpenDota.
Enter a player's OpenDota ID or profile URL along with their current stats
to get a predicted cost.""",
article="""### How it works
- The predictor uses machine learning trained on historical RD2L draft data
- Player statistics are fetched from OpenDota API
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
- Predictions are based on both current stats and historical performance
### Notes
- MMR should be the player's current solo MMR
- Position comfort should reflect actual role experience
- Predictions are estimates and may vary from actual draft results"""
)
# Load model on startup
print(load_model())
if __name__ == "__main__":
demo.launch()