Spaces:
Sleeping
Sleeping
import joblib | |
import pandas as pd | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import argparse | |
def main(): | |
parser = argparse.ArgumentParser(description='Process some integers.') | |
parser.add_argument('--input', type=str, help="Input file path (file should be in parquet format and have 'prompt' and 'completion' columns)") | |
parser.add_argument('--output', type=str, help='Output file path') | |
args = parser.parse_args() | |
df = pd.read_parquet(args.input) | |
# fit the vectorizer on the prompt column | |
prompt_tfidf_vectorizer = TfidfVectorizer() | |
prompt_tfidf_vectorizer.fit(df['prompt']) | |
# save the vectorizer | |
joblib.dump(prompt_tfidf_vectorizer, args.output + 'prompt-vectorizer.pkl') | |
# get the tfidf_matrix | |
prompt_tfidf_matrix = prompt_tfidf_vectorizer.transform(df['prompt']) | |
# save the tfidf_matrix | |
joblib.dump(prompt_tfidf_matrix, args.output + 'prompt-tfidf-matrix.pkl') | |
# fit the vectorizer on the completion column | |
completion_tfidf_vectorizer = TfidfVectorizer() | |
completion_tfidf_vectorizer.fit(df['completion']) | |
# save the vectorizer | |
joblib.dump(completion_tfidf_vectorizer, args.output + 'completion-vectorizer.pkl') | |
# get the tfidf_matrix | |
completion_tfidf_matrix = completion_tfidf_vectorizer.transform(df['completion']) | |
# save the tfidf_matrix | |
joblib.dump(completion_tfidf_matrix, args.output + 'completion-tfidf-matrix.pkl') | |
print("Done!") | |
if __name__ == '__main__': | |
main() | |
# example usage: python create-tfidf-matrix.py --input fine-tuning-data.parquet --output ./ |