Spaces:
Running
Running
File size: 14,376 Bytes
0257e1e cc8348d 0257e1e cc8348d 35f0d17 cc8348d bdb3169 457d325 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d bdb3169 e4627b7 bdb3169 e4627b7 bdb3169 457d325 35f0d17 cc8348d 35f0d17 0257e1e 35f0d17 cc8348d bdb3169 457d325 cc8348d c3367aa e4627b7 c3367aa e4627b7 c3367aa e4627b7 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d 35f0d17 cc8348d c3367aa e4627b7 35f0d17 e4627b7 c3367aa e4627b7 35f0d17 e4627b7 cc8348d 457d325 35f0d17 457d325 35f0d17 457d325 cc8348d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU and enforce CPU execution
import gradio as gr
from transformers import (
DistilBertTokenizerFast,
DistilBertForSequenceClassification,
AutoTokenizer,
AutoModelForSequenceClassification,
)
from huggingface_hub import hf_hub_download
import torch
import pickle
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import re
# Load GRU, LSTM, and BiLSTM models and tokenizers
gru_repo_id = "arjahojnik/GRU-sentiment-model"
gru_model_path = hf_hub_download(repo_id=gru_repo_id, filename="best_GRU_tuning_model.h5")
gru_model = load_model(gru_model_path)
gru_tokenizer_path = hf_hub_download(repo_id=gru_repo_id, filename="my_tokenizer.pkl")
with open(gru_tokenizer_path, "rb") as f:
gru_tokenizer = pickle.load(f)
lstm_repo_id = "arjahojnik/LSTM-sentiment-model"
lstm_model_path = hf_hub_download(repo_id=lstm_repo_id, filename="LSTM_model.h5")
lstm_model = load_model(lstm_model_path)
lstm_tokenizer_path = hf_hub_download(repo_id=lstm_repo_id, filename="my_tokenizer.pkl")
with open(lstm_tokenizer_path, "rb") as f:
lstm_tokenizer = pickle.load(f)
bilstm_repo_id = "arjahojnik/BiLSTM-sentiment-model"
bilstm_model_path = hf_hub_download(repo_id=bilstm_repo_id, filename="BiLSTM_model.h5")
bilstm_model = load_model(bilstm_model_path)
bilstm_tokenizer_path = hf_hub_download(repo_id=bilstm_repo_id, filename="my_tokenizer.pkl")
with open(bilstm_tokenizer_path, "rb") as f:
bilstm_tokenizer = pickle.load(f)
# Preprocessing function for text
def preprocess_text(text):
text = text.lower()
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
return text
# Prediction functions for GRU, LSTM, and BiLSTM
def predict_with_gru(text):
cleaned = preprocess_text(text)
seq = gru_tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = gru_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
def predict_with_lstm(text):
cleaned = preprocess_text(text)
seq = lstm_tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = lstm_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
def predict_with_bilstm(text):
cleaned = preprocess_text(text)
seq = bilstm_tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = bilstm_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
# Load other models
models = {
"DistilBERT": {
"tokenizer": DistilBertTokenizerFast.from_pretrained("nhull/distilbert-sentiment-model"),
"model": DistilBertForSequenceClassification.from_pretrained("nhull/distilbert-sentiment-model"),
},
"Logistic Regression": {}, # Placeholder for logistic regression
"BERT Multilingual (NLP Town)": {
"tokenizer": AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
"model": AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment"),
},
"TinyBERT": {
"tokenizer": AutoTokenizer.from_pretrained("elo4/TinyBERT-sentiment-model"),
"model": AutoModelForSequenceClassification.from_pretrained("elo4/TinyBERT-sentiment-model"),
},
"RoBERTa": {
"tokenizer": AutoTokenizer.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
"model": AutoModelForSequenceClassification.from_pretrained("ordek899/roberta_1to5rating_pred_for_restaur_trained_on_hotels"),
}
}
# Logistic regression model and TF-IDF vectorizer
logistic_regression_repo = "nhull/logistic-regression-model"
log_reg_model_path = hf_hub_download(repo_id=logistic_regression_repo, filename="logistic_regression_model.pkl")
with open(log_reg_model_path, "rb") as model_file:
log_reg_model = pickle.load(model_file)
vectorizer_path = hf_hub_download(repo_id=logistic_regression_repo, filename="tfidf_vectorizer.pkl")
with open(vectorizer_path, "rb") as vectorizer_file:
vectorizer = pickle.load(vectorizer_file)
# Move HuggingFace models to device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model_data in models.values():
if "model" in model_data:
model_data["model"].to(device)
# Prediction functions for other models
def predict_with_distilbert(text):
tokenizer = models["DistilBERT"]["tokenizer"]
model = models["DistilBERT"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def predict_with_logistic_regression(text):
transformed_text = vectorizer.transform([text])
predictions = log_reg_model.predict(transformed_text)
return int(predictions[0])
def predict_with_bert_multilingual(text):
tokenizer = models["BERT Multilingual (NLP Town)"]["tokenizer"]
model = models["BERT Multilingual (NLP Town)"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def predict_with_tinybert(text):
tokenizer = models["TinyBERT"]["tokenizer"]
model = models["TinyBERT"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
def predict_with_roberta_ordek899(text):
tokenizer = models["RoBERTa"]["tokenizer"]
model = models["RoBERTa"]["model"]
encodings = tokenizer([text], padding=True, truncation=True, max_length=512, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**encodings)
logits = outputs.logits
predictions = logits.argmax(axis=-1).cpu().numpy()
return int(predictions[0] + 1)
# Unified function for analysis
def analyze_sentiment_and_statistics(text):
results = {
"Logistic Regression": predict_with_logistic_regression(text),
"GRU Model": predict_with_gru(text),
"LSTM Model": predict_with_lstm(text),
"BiLSTM Model": predict_with_bilstm(text),
"DistilBERT": predict_with_distilbert(text),
"BERT Multilingual (NLP Town)": predict_with_bert_multilingual(text),
"TinyBERT": predict_with_tinybert(text),
"RoBERTa": predict_with_roberta_ordek899(text),
}
scores = list(results.values())
min_score = min(scores)
max_score = max(scores)
min_score_models = [model for model, score in results.items() if score == min_score]
max_score_models = [model for model, score in results.items() if score == max_score]
average_score = np.mean(scores)
if all(score == scores[0] for score in scores):
statistics = {
"Message": "All models predict the same score.",
"Average Score": f"{average_score:.2f}",
}
else:
statistics = {
"Lowest Score": f"{min_score} (Models: {', '.join(min_score_models)})",
"Highest Score": f"{max_score} (Models: {', '.join(max_score_models)})",
"Average Score": f"{average_score:.2f}",
}
return results, statistics
# Gradio Interface
with gr.Blocks(
css="""
.gradio-container {
max-width: 900px;
margin: auto;
padding: 20px;
background-color: #1e1e1e; /* Dark background for contrast */
color: white; /* White text throughout */
}
h1 {
text-align: center;
font-size: 2.5rem;
color: white; /* White text for title */
}
footer {
text-align: center;
margin-top: 20px;
font-size: 14px;
color: white; /* White text for footer */
}
.gr-button {
background-color: #4a4a4a; /* Dark gray button background */
color: white; /* White button text */
border-radius: 8px; /* Rounded buttons */
padding: 10px 20px;
font-weight: bold;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #6a6a6a; /* Slightly lighter gray on hover */
}
.gr-textbox, .gr-dropdown, .gr-output {
border: 1px solid #4a4a4a; /* Subtle gray border */
border-radius: 8px; /* Rounded edges */
background-color: #2e2e2e; /* Darker gray input background */
color: white; /* White text for inputs/outputs */
}
"""
) as demo:
gr.Markdown("# Sentiment Analysis Demo")
gr.Markdown(
"""
This demo analyzes the sentiment of text inputs (e.g., hotel or restaurant reviews) on a scale from 1 to 5 using various machine learning, deep learning, and transformer-based models.
- **Machine Learning**: Logistic Regression with TF-IDF.
- **Deep Learning**: GRU, LSTM, and BiLSTM models.
- **Transformers**: DistilBERT, TinyBERT, BERT Multilingual, and RoBERTa.
### Features:
- Compare predictions across different models.
- See which model predicts the highest and lowest scores.
- Get the average sentiment score across all models.
- Easily test with your own input or select from suggested reviews.
Use this app to explore how different models interpret sentiment and compare their outputs!
"""
)
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Enter your text here:",
lines=3,
placeholder="Type your hotel/restaurant review here..."
)
sample_reviews = [
"The hotel was fantastic! Clean rooms and excellent service.",
"The food was horrible, and the staff was rude.",
"Amazing experience overall. Highly recommend!",
"It was okay, not great but not terrible either.",
"Terrible! The room was dirty, and the service was non-existent."
]
sample_dropdown = gr.Dropdown(
choices=sample_reviews,
label="Or select a sample review:",
interactive=True
)
def update_textbox(selected_sample):
return selected_sample
sample_dropdown.change(
update_textbox,
inputs=[sample_dropdown],
outputs=[text_input]
)
analyze_button = gr.Button("Analyze Sentiment")
with gr.Row():
with gr.Column():
gr.Markdown("### Machine Learning")
log_reg_output = gr.Textbox(label="Logistic Regression", interactive=False)
with gr.Column():
gr.Markdown("### Deep Learning")
gru_output = gr.Textbox(label="GRU Model", interactive=False)
lstm_output = gr.Textbox(label="LSTM Model", interactive=False)
bilstm_output = gr.Textbox(label="BiLSTM Model", interactive=False)
with gr.Column():
gr.Markdown("### Transformers")
distilbert_output = gr.Textbox(label="DistilBERT", interactive=False)
bert_output = gr.Textbox(label="BERT Multilingual", interactive=False)
tinybert_output = gr.Textbox(label="TinyBERT", interactive=False)
roberta_output = gr.Textbox(label="RoBERTa", interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("### Statistics")
stats_output = gr.Textbox(label="Statistics", interactive=False)
# Add footer
gr.Markdown(
"""
<footer>
This demo was built as a part of the NLP course at the University of Zagreb.
Check out our GitHub repository:
<a href="https://github.com/FFZG-NLP-2024/TripAdvisor-Sentiment/" target="_blank" style="color: white; text-decoration: underline;">TripAdvisor Sentiment Analysis</a>
Explore our HuggingFace collection:
<a href="https://huggingface.co/collections/nhull/nlp-zg-6794604b85fd4216e6470d38" target="_blank" style="color: white; text-decoration: underline;">NLP Zagreb HuggingFace Collection</a>
</footer>
"""
)
def process_input_and_analyze(text_input):
results, statistics = analyze_sentiment_and_statistics(text_input)
if "Message" in statistics:
return (
results["Logistic Regression"],
results["GRU Model"],
results["LSTM Model"],
results["BiLSTM Model"],
results["DistilBERT"],
results["BERT Multilingual (NLP Town)"],
results["TinyBERT"],
results["RoBERTa"],
f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
)
else:
return (
results["Logistic Regression"],
results["GRU Model"],
results["LSTM Model"],
results["BiLSTM Model"],
results["DistilBERT"],
results["BERT Multilingual (NLP Town)"],
results["TinyBERT"],
results["RoBERTa"],
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
)
analyze_button.click(
process_input_and_analyze,
inputs=[text_input],
outputs=[
log_reg_output,
gru_output,
lstm_output,
bilstm_output,
distilbert_output,
bert_output,
tinybert_output,
roberta_output,
stats_output
]
)
demo.launch()
|