Niklas Hoepner
commited on
Commit
·
3adfe4c
1
Parent(s):
8f20777
Improved Gradio Application
Browse files
README.md
CHANGED
@@ -19,7 +19,7 @@ app_file: app.py
|
|
19 |
pinned: false
|
20 |
---
|
21 |
|
22 |
-
#
|
23 |
|
24 |
## 📌 Description
|
25 |
|
|
|
19 |
pinned: false
|
20 |
---
|
21 |
|
22 |
+
# Metric Card: L3Score
|
23 |
|
24 |
## 📌 Description
|
25 |
|
app.py
CHANGED
@@ -18,6 +18,27 @@ def compute_l3score(api_key, provider, model, questions, predictions, references
|
|
18 |
return {"error": str(e)}
|
19 |
|
20 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
gr.Markdown(r"""
|
22 |
# 🦢 L3Score Evaluation Demo
|
23 |
|
@@ -55,7 +76,9 @@ with gr.Blocks() as demo:
|
|
55 |
\text{L3Score} = \frac{\exp(l_{\text{yes}})}{\exp(l_{\text{yes}}) + \exp(l_{\text{no}})}
|
56 |
$$
|
57 |
|
58 |
-
- If only one is present, the missing token’s probability is estimated using
|
|
|
|
|
59 |
|
60 |
---
|
61 |
|
@@ -87,10 +110,13 @@ with gr.Blocks() as demo:
|
|
87 |
| `predictions`| `list[str]` | Generated answers by the model being evaluated. |
|
88 |
| `references` | `list[str]` | Ground-truth or reference answers. |
|
89 |
| `api_key` | `str` | API key for the selected LLM provider. |
|
90 |
-
| `provider` | `str` | Must support top-n token log-probabilities.
|
91 |
-
| `model` | `str` | Name of the evaluation LLM.
|
92 |
|
93 |
## 📄 Output
|
|
|
|
|
|
|
94 |
```python
|
95 |
{"L3Score": float}
|
96 |
```
|
@@ -113,23 +139,5 @@ with gr.Blocks() as demo:
|
|
113 |
```
|
114 |
""")
|
115 |
|
116 |
-
with gr.Row():
|
117 |
-
api_key = gr.Textbox(label="API Key", type="password")
|
118 |
-
provider = gr.Dropdown(label="Provider", choices=["openai", "deepseek", "xai"], value="openai")
|
119 |
-
model = gr.Textbox(label="Model", value="gpt-4o-mini")
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
questions = gr.Textbox(label="Questions (one per line)", lines=4, placeholder="What is the capital of France?")
|
123 |
-
predictions = gr.Textbox(label="Predictions (one per line)", lines=4, placeholder="Paris")
|
124 |
-
references = gr.Textbox(label="References (one per line)", lines=4, placeholder="Paris")
|
125 |
-
|
126 |
-
compute_button = gr.Button("Compute L3Score")
|
127 |
-
output = gr.JSON(label="L3Score Result")
|
128 |
-
|
129 |
-
compute_button.click(
|
130 |
-
fn=compute_l3score,
|
131 |
-
inputs=[api_key, provider, model, questions, predictions, references],
|
132 |
-
outputs=output
|
133 |
-
)
|
134 |
|
135 |
demo.launch()
|
|
|
18 |
return {"error": str(e)}
|
19 |
|
20 |
with gr.Blocks() as demo:
|
21 |
+
|
22 |
+
|
23 |
+
with gr.Row():
|
24 |
+
api_key = gr.Textbox(label="API Key", type="password")
|
25 |
+
provider = gr.Dropdown(label="Provider", choices=["openai", "deepseek", "xai"], value="openai")
|
26 |
+
model = gr.Textbox(label="Model", value="gpt-4o-mini")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
questions = gr.Textbox(label="Questions (one per line)", lines=4, placeholder="What is the capital of France?")
|
30 |
+
predictions = gr.Textbox(label="Predictions (one per line)", lines=4, placeholder="Paris")
|
31 |
+
references = gr.Textbox(label="References (one per line)", lines=4, placeholder="Paris")
|
32 |
+
|
33 |
+
compute_button = gr.Button("Compute L3Score")
|
34 |
+
output = gr.JSON(label="L3Score Result")
|
35 |
+
|
36 |
+
compute_button.click(
|
37 |
+
fn=compute_l3score,
|
38 |
+
inputs=[api_key, provider, model, questions, predictions, references],
|
39 |
+
outputs=output
|
40 |
+
)
|
41 |
+
|
42 |
gr.Markdown(r"""
|
43 |
# 🦢 L3Score Evaluation Demo
|
44 |
|
|
|
76 |
\text{L3Score} = \frac{\exp(l_{\text{yes}})}{\exp(l_{\text{yes}}) + \exp(l_{\text{no}})}
|
77 |
$$
|
78 |
|
79 |
+
- If only one is present, the missing token’s probability is estimated using the minimum of:
|
80 |
+
- remaining probability mass apart from the top-5 tokens
|
81 |
+
- the least likely top-5 token
|
82 |
|
83 |
---
|
84 |
|
|
|
110 |
| `predictions`| `list[str]` | Generated answers by the model being evaluated. |
|
111 |
| `references` | `list[str]` | Ground-truth or reference answers. |
|
112 |
| `api_key` | `str` | API key for the selected LLM provider. |
|
113 |
+
| `provider` | `str` | Must support top-n token log-probabilities. **Default**: openai |
|
114 |
+
| `model` | `str` | Name of the evaluation LLM. **Default**: gpt-4o-mini |
|
115 |
|
116 |
## 📄 Output
|
117 |
+
|
118 |
+
Calling the `compute` method returns a dictionary containing the L3Score:
|
119 |
+
|
120 |
```python
|
121 |
{"L3Score": float}
|
122 |
```
|
|
|
139 |
```
|
140 |
""")
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
demo.launch()
|