File size: 11,925 Bytes
e130a6a 06fb7ae e130a6a d9007fb e130a6a d9007fb e130a6a d9007fb e130a6a d9007fb e130a6a d9007fb e130a6a d9007fb e130a6a d9007fb 06fb7ae d9007fb 6d12913 d9007fb 6d12913 d9007fb 6d12913 d9007fb 6d12913 d9007fb 9be3985 d9007fb e130a6a d9007fb e130a6a f4e6d54 e130a6a d9007fb e130a6a 6d12913 d9007fb 6d12913 d9007fb e130a6a d9007fb e130a6a 2a3f461 d9007fb 2a3f461 e130a6a d9007fb 06fb7ae e130a6a d9007fb e130a6a d9007fb e130a6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
The metric is based on the log-probability of the Yes/No token of an LLM judge.
Metric is based on the paper: https://arxiv.org/pdf/2407.09413
"""
import os
import evaluate
import datasets
import numpy as np
import openai
from langchain.chat_models.base import init_chat_model
from litellm import model_cost
_CITATION = """\
@article{pramanick2024spiqa,
title={Spiqa: A dataset for multimodal question answering on scientific papers},
author={Pramanick, Shraman and Chellappa, Rama and Venugopalan, Subhashini},
journal={arXiv preprint arXiv:2407.09413},
year={2024}
}
"""
_DESCRIPTION = """\
Implements the L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
The metric is based on the log-probability of the Yes/No token of an LLM judge.
Metric is based on the paper: https://arxiv.org/pdf/2407.09413
"""
_KWARGS_DESCRIPTION = """
Implements the L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
Args:
questions: list of questions to score. Each question should be a string.
predictions: list of predictions to score. Each predictions
should be a string.
references: list of reference for each prediction. Each
reference should be a string.
Returns:
L3Score: mean L3Score for all (question, prediction, reference) triplets.
Cost: total cost of the LLM calls.
Examples:
Example 1: High certainty the prediction is the same as the ground-truth.
>>> L3Score = evaluate.load("L3Score")
>>> L3Score.compute(questions=["What is the capital of France?"], predictions=["Paris"], references=["Paris"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
{'L3Score': 0.99..., 'Cost': ...}
Example 2: High certainty the prediction is not the same as the ground-truth.
>>> L3Score = evaluate.load("L3Score")
>>> L3Score.compute(questions=["What is the capital of Germany?"], predictions=["Moscow"], references=["Berlin"], api_key="your-openai-api-key", provider="openai", model="gpt-4o-mini")
{'L3Score': 0.00..., 'Cost': ...}
"""
PROVIDER_WITH_TOP_LOGPROBS = ["openai", "deepseek", "xai"]
_PROMPT = "You are given a question, ground-truth answer, and a candidate answer. Question: {question} \nGround-truth answer: {gt} \nCandidate answer: {answer} \n\
Is the semantic meaning of the ground-truth and candidate answers similar? Answer in one word - Yes or No."
_SUFFIXES_TO_SCORE = [" yes", " yeah"]
_COMPLEMENT_SUFFIXES = [" no"]
NEGATIVE_INF = -1000.0
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class L3Score(evaluate.Metric):
"""
L3Score metric to score the quality of a free-form answer given a question and a ground-truth answer.
The metric is based on the log-probability of the Yes/No token of an LLM judge.
Metric is from the paper: https://arxiv.org/pdf/2407.09413
"""
def _info(self):
return evaluate.MetricInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"questions": datasets.Value("string"),
"predictions": datasets.Value("string"),
"references": datasets.Value("string"),
}
),
homepage="https://github.com/google/spiqa",
codebase_urls=[
"https://github.com/google/spiqa/blob/main/metrics/llmlogscore/llmlogscore.py"
],
reference_urls=[
"https://arxiv.org/pdf/2407.09413",
"https://github.com/google/spiqa",
"https://huggingface.co/datasets/google/spiqa",
],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
pass
def _verify_input(
self, questions, predictions, references, provider, api_key, model
):
"""Verify the input parameters"""
if provider not in PROVIDER_WITH_TOP_LOGPROBS:
raise ValueError(
"Provider must offer top_logprobs to use this metric, pick from {}".format(
PROVIDER_WITH_TOP_LOGPROBS
)
)
# Check whether the model is available
if provider == "openai":
client = openai.OpenAI(api_key=api_key)
model_names = set([model.id for model in client.models.list()])
if model not in model_names:
raise ValueError(
f"Model {model} not found for provider {provider}, available models: {model_names}"
)
elif provider == "deepseek":
client = openai.OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
model_names = [model.id for model in client.models.list()]
if model not in model_names:
raise ValueError(
f"Model {model} not found for provider {provider}, available models: {model_names}"
)
elif provider == "xai":
client = openai.OpenAI(api_key=api_key, base_url="https://api.xai.com")
model_names = [model.id for model in client.models.list()]
if model not in model_names:
raise ValueError(
f"Model {model} not found for provider {provider}, available models: {model_names}"
)
assert (
len(questions) == len(predictions) == len(references)
), "Questions, predictions and references must have the same length"
def _get_llm(self, model, api_key):
"""Get the LLM"""
llm = init_chat_model(model=model, api_key=api_key)
llm = llm.bind(logprobs=True, top_logprobs=5)
self._model_cost = model_cost[llm.model_name]
return llm
def _compute(
self,
questions,
predictions,
references,
api_key,
provider="openai",
model="gpt-4o-mini",
):
"""Returns the scores"""
# Check whether llm can be initialized
try:
self._verify_input(
questions, predictions, references, provider, api_key, model
)
except ValueError as e:
return {"error": str(e)}
except openai.AuthenticationError as e:
message = e.body["message"]
return {"error": f"Authentication failed: {message}"}
except Exception as e:
return {
"error": f"An error occurred when verifying the provider/model match: {e}"
}
# Initialize the LLM
llm = self._get_llm(model, api_key)
L3Score = 0
count = 0
total_cost = 0
for question, prediction, reference in zip(questions, predictions, references):
try:
response = llm.invoke(
(
"human",
_PROMPT.format(
question=question, gt=reference, answer=prediction
),
)
)
cost = self._get_cost(response)
total_cost += cost
except openai.AuthenticationError as e:
message = e.body["message"]
return {"error": f"Authentication failed: {message}"}
except openai.RateLimitError as e:
message = e.body["message"]
return {"error": "Rate limit exceeded: {}".format(e)}
except openai.BadRequestError as e:
message = e.body["message"]
return {"error": "Bad request: {}".format(e)}
except Exception as e:
message = e.body["message"]
return {"error": "An error occurred: {}".format(e)}
score = self._calculate_L3Score(
response.response_metadata["logprobs"]["content"][0]["top_logprobs"]
)
L3Score += score.item()
count += 1
if count > 0:
L3Score = L3Score / count
return {
"L3Score": L3Score,
"Cost": total_cost,
}
def _calculate_L3Score(self, top_logprobs):
"""
Calculates the L3 score for a given response.
"""
normalized_suffixes = [self._normalize(suffix) for suffix in _SUFFIXES_TO_SCORE]
normalized_complement_suffixes = [
self._normalize(complement_suffix)
for complement_suffix in _COMPLEMENT_SUFFIXES
]
suffix_logprob = NEGATIVE_INF
complement_logprob = NEGATIVE_INF
suffix_index = -1
complement_suffix_index = -1
for i, token_logprob in enumerate(top_logprobs):
if self._normalize(token_logprob["token"]) in normalized_suffixes:
suffix_logprob = token_logprob["logprob"]
suffix_index = i
break
for i, token_logprob in enumerate(top_logprobs):
if (
self._normalize(token_logprob["token"])
in normalized_complement_suffixes
):
complement_suffix_index = i
complement_logprob = token_logprob["logprob"]
break
if suffix_index == -1 and complement_suffix_index == -1:
return 0.0
if suffix_index != -1 and complement_suffix_index != -1:
return self._renormalize_score(
yes_score=suffix_logprob, no_score=complement_logprob
)
lowest_logprob = top_logprobs[-1]["logprob"]
lowest_token_prob = np.exp(lowest_logprob)
sum_probs = sum(
[np.exp(token_logprob["logprob"]) for token_logprob in top_logprobs]
)
remaining_prob = 1 - sum_probs
min_prob = min(lowest_token_prob, remaining_prob)
if min_prob < 1e-8:
min_prob = 1e-8
reciprocal_logprob = np.log(min_prob)
if suffix_index != -1:
exclude_score = suffix_logprob
include_score = reciprocal_logprob
elif complement_suffix_index != -1:
exclude_score = reciprocal_logprob
include_score = complement_logprob
return self._renormalize_score(yes_score=exclude_score, no_score=include_score)
def _renormalize_score(self, yes_score: float, no_score: float) -> float:
"""Renormalize the scores to be between 0 and 1."""
return 1 / (1 + np.exp(-(yes_score - no_score)))
def _normalize(self, text: str) -> str:
"""Remove white space and lower case for normalized comparisons."""
return text.strip().lower()
def _get_cost(self, response):
"""Get the cost of the response"""
return (
self._model_cost["input_cost_per_token"]
* response.usage_metadata["input_tokens"]
+ self._model_cost["output_cost_per_token"]
* response.usage_metadata["output_tokens"]
)
|