Update app
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from models.HybridGNet2IGSC import Hybrid
|
|
| 6 |
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
|
| 7 |
import scipy.sparse as sp
|
| 8 |
import torch
|
|
|
|
| 9 |
|
| 10 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 11 |
hybrid = None
|
|
@@ -43,11 +44,11 @@ def drawOnTop(img, landmarks):
|
|
| 43 |
# Draw the landmarks as dots
|
| 44 |
|
| 45 |
for l in RL:
|
| 46 |
-
image = cv2.circle(image, (int(l[0]), int(l[1])),
|
| 47 |
for l in LL:
|
| 48 |
-
image = cv2.circle(image, (int(l[0]), int(l[1])),
|
| 49 |
for l in H:
|
| 50 |
-
image = cv2.circle(image, (int(l[0]), int(l[1])),
|
| 51 |
|
| 52 |
return image
|
| 53 |
|
|
@@ -132,10 +133,18 @@ def segment(input_img):
|
|
| 132 |
|
| 133 |
with torch.no_grad():
|
| 134 |
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) * 1024
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
| 140 |
-
demo = gr.Interface(segment, gr.Image(type="filepath"), "
|
| 141 |
demo.launch()
|
|
|
|
| 6 |
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
|
| 7 |
import scipy.sparse as sp
|
| 8 |
import torch
|
| 9 |
+
import pandas as pd
|
| 10 |
|
| 11 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 12 |
hybrid = None
|
|
|
|
| 44 |
# Draw the landmarks as dots
|
| 45 |
|
| 46 |
for l in RL:
|
| 47 |
+
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
|
| 48 |
for l in LL:
|
| 49 |
+
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
|
| 50 |
for l in H:
|
| 51 |
+
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1)
|
| 52 |
|
| 53 |
return image
|
| 54 |
|
|
|
|
| 133 |
|
| 134 |
with torch.no_grad():
|
| 135 |
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) * 1024
|
| 136 |
+
|
| 137 |
+
outseg = drawOnTop(img, output)
|
| 138 |
+
|
| 139 |
+
output = output.astype('int')
|
| 140 |
+
|
| 141 |
+
RL = pd.DataFrame(output[0:44], columns=["x","y"])
|
| 142 |
+
LL = pd.DataFrame(output[44:94], columns=["x","y"])
|
| 143 |
+
H = pd.DataFrame(output[94:], columns=["x","y"])
|
| 144 |
+
|
| 145 |
+
return outseg #, RL, LL, H
|
| 146 |
|
| 147 |
|
| 148 |
if __name__ == "__main__":
|
| 149 |
+
demo = gr.Interface(segment, gr.Image(type="filepath", height=750), outputs=gr.Image(type="filepath", height=750), title="Chest X-ray HybridGNet Segmentation")
|
| 150 |
demo.launch()
|