ngaggion commited on
Commit
45e75b1
·
1 Parent(s): 949cd81

Update code to save results to a zip

Browse files
Files changed (2) hide show
  1. app.py +144 -14
  2. tmp/,gitkeep +0 -0
app.py CHANGED
@@ -7,16 +7,18 @@ from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
7
  import scipy.sparse as sp
8
  import torch
9
  import pandas as pd
 
10
 
11
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
12
  hybrid = None
13
 
14
- def getDenseMask(landmarks):
 
15
  RL = landmarks[0:44]
16
  LL = landmarks[44:94]
17
  H = landmarks[94:]
18
 
19
- img = np.zeros([1024,1024], dtype = 'uint8')
20
 
21
  RL = RL.reshape(-1, 1, 2).astype('int')
22
  LL = LL.reshape(-1, 1, 2).astype('int')
@@ -28,11 +30,31 @@ def getDenseMask(landmarks):
28
 
29
  return img
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- def drawOnTop(img, landmarks):
33
- output = getDenseMask(landmarks)
 
34
 
35
- image = np.zeros([1024, 1024, 3])
36
  image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
37
  image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
38
  image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
@@ -118,7 +140,28 @@ def preprocess(input_img):
118
 
119
  return img, (h, w, padding)
120
 
 
 
 
 
 
 
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  def segment(input_img):
123
  global hybrid, device
124
 
@@ -126,25 +169,112 @@ def segment(input_img):
126
  hybrid = loadModel(device)
127
 
128
  input_img = cv2.imread(input_img, 0) / 255.0
 
129
 
130
  img, (h, w, padding) = preprocess(input_img)
131
 
132
  data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
133
 
134
  with torch.no_grad():
135
- output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) * 1024
136
-
137
- outseg = drawOnTop(img, output)
138
 
139
  output = output.astype('int')
140
 
141
- RL = pd.DataFrame(output[0:44], columns=["x","y"])
142
- LL = pd.DataFrame(output[44:94], columns=["x","y"])
143
- H = pd.DataFrame(output[94:], columns=["x","y"])
144
 
145
- return outseg #, RL, LL, H
146
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
148
  if __name__ == "__main__":
149
- demo = gr.Interface(segment, inputs=gr.Image(type="filepath", height=750), examples=['utils/example.jpg'], outputs=gr.Image(type="filepath", height=750), title="Chest X-ray HybridGNet Segmentation")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  demo.launch()
 
7
  import scipy.sparse as sp
8
  import torch
9
  import pandas as pd
10
+ from zipfile import ZipFile
11
 
12
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
13
  hybrid = None
14
 
15
+ def getDenseMask(landmarks, h, w):
16
+
17
  RL = landmarks[0:44]
18
  LL = landmarks[44:94]
19
  H = landmarks[94:]
20
 
21
+ img = np.zeros([h, w], dtype = 'uint8')
22
 
23
  RL = RL.reshape(-1, 1, 2).astype('int')
24
  LL = LL.reshape(-1, 1, 2).astype('int')
 
30
 
31
  return img
32
 
33
+ def getMasks(landmarks, h, w):
34
+
35
+ RL = landmarks[0:44]
36
+ LL = landmarks[44:94]
37
+ H = landmarks[94:]
38
+
39
+ RL = RL.reshape(-1, 1, 2).astype('int')
40
+ LL = LL.reshape(-1, 1, 2).astype('int')
41
+ H = H.reshape(-1, 1, 2).astype('int')
42
+
43
+ RL_mask = np.zeros([h, w], dtype = 'uint8')
44
+ LL_mask = np.zeros([h, w], dtype = 'uint8')
45
+ H_mask = np.zeros([h, w], dtype = 'uint8')
46
+
47
+ RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1)
48
+ LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1)
49
+ H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1)
50
+
51
+ return RL_mask, LL_mask, H_mask
52
 
53
+ def drawOnTop(img, landmarks, original_shape):
54
+ h, w = original_shape
55
+ output = getDenseMask(landmarks, h, w)
56
 
57
+ image = np.zeros([h, w, 3])
58
  image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
59
  image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
60
  image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
 
140
 
141
  return img, (h, w, padding)
142
 
143
+
144
+ def removePreprocess(output, info):
145
+ h, w, padding = info
146
+
147
+ if h != 1024 or w != 1024:
148
+ output = output * h
149
 
150
+ padh, padw, auxh, auxw = padding
151
+
152
+ output[:, 0] = output[:, 0] - padw//2
153
+ output[:, 1] = output[:, 1] - padh//2
154
+
155
+ return output
156
+
157
+
158
+ def zip_files(files):
159
+ with ZipFile("complete_results.zip", "w") as zipObj:
160
+ for idx, file in enumerate(files):
161
+ zipObj.write(file, arcname=file.split("/")[-1])
162
+ return "complete_results.zip"
163
+
164
+
165
  def segment(input_img):
166
  global hybrid, device
167
 
 
169
  hybrid = loadModel(device)
170
 
171
  input_img = cv2.imread(input_img, 0) / 255.0
172
+ original_shape = input_img.shape[:2]
173
 
174
  img, (h, w, padding) = preprocess(input_img)
175
 
176
  data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
177
 
178
  with torch.no_grad():
179
+ output = hybrid(data)[0].cpu().numpy().reshape(-1, 2)
180
+
181
+ output = removePreprocess(output, (h, w, padding))
182
 
183
  output = output.astype('int')
184
 
185
+ outseg = drawOnTop(input_img, output, original_shape)
 
 
186
 
187
+ seg_to_save = (outseg.copy() * 255).astype('uint8')
188
+ cv2.imwrite("tmp/overlap_segmentation.png" , cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR))
189
+
190
+ RL = output[0:44]
191
+ LL = output[44:94]
192
+ H = output[94:]
193
+
194
+ np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d")
195
+ np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d")
196
+ np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d")
197
+
198
+ RL_mask, LL_mask, H_mask = getMasks(output, original_shape[0], original_shape[1])
199
+
200
+ cv2.imwrite("tmp/RL_mask.png", RL_mask)
201
+ cv2.imwrite("tmp/LL_mask.png", LL_mask)
202
+ cv2.imwrite("tmp/H_mask.png", H_mask)
203
+
204
+ zip = zip_files(["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png"])
205
+
206
+ return outseg, ["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png", zip]
207
 
208
  if __name__ == "__main__":
209
+
210
+ with gr.Blocks() as demo:
211
+
212
+ gr.Markdown("""
213
+ # Chest X-ray HybridGNet Segmentation.
214
+
215
+ Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
216
+
217
+ Instructions:
218
+ 1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
219
+ 2. Click on "Segment Image".
220
+
221
+ Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation.
222
+
223
+ Please check citations below.
224
+ """)
225
+
226
+ with gr.Tab("Segment Image"):
227
+ with gr.Row():
228
+ with gr.Column():
229
+ image_input = gr.Image(type="filepath", height=750)
230
+
231
+ with gr.Row():
232
+ clear_button = gr.Button("Clear")
233
+ image_button = gr.Button("Segment Image")
234
+
235
+ gr.Examples(inputs=image_input, examples=['utils/example.jpg'])
236
+
237
+ with gr.Column():
238
+ image_output = gr.Image(type="filepath", height=750)
239
+ results = gr.File()
240
+
241
+ gr.Markdown("""If you use this code, please cite:
242
+
243
+ ```
244
+ @article{gaggion2022TMI,
245
+ doi = {10.1109/tmi.2022.3224660},
246
+ url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
247
+ year = 2022,
248
+ publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
249
+ author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
250
+ title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
251
+ journal = {{IEEE} Transactions on Medical Imaging}
252
+ }
253
+ ```
254
+
255
+ This model was trained following the procedure explained on:
256
+
257
+ ```
258
+ @misc{gaggion2022ISBI,
259
+ title={Multi-center anatomical segmentation with heterogeneous labels via landmark-based models},
260
+ author={Nicolás Gaggion and Maria Vakalopoulou and Diego H. Milone and Enzo Ferrante},
261
+ year={2022},
262
+ eprint={2211.07395},
263
+ archivePrefix={arXiv},
264
+ primaryClass={eess.IV}
265
+ }
266
+ ```
267
+
268
+ Author: Nicolás Gaggion
269
+ Website: [ngaggion.github.io](https://ngaggion.github.io/)
270
+
271
+ """)
272
+
273
+
274
+ clear_button.click(lambda: None, None, image_input, queue=False)
275
+ clear_button.click(lambda: None, None, image_output, queue=False)
276
+
277
+ image_button.click(segment, inputs=image_input, outputs=[image_output, results], queue=False)
278
+
279
+
280
  demo.launch()
tmp/,gitkeep ADDED
File without changes