ngaggion's picture
Last example
b322ac7
raw
history blame
10.3 kB
import numpy as np
import gradio as gr
import cv2
from models.HybridGNet2IGSC import Hybrid
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart
import scipy.sparse as sp
import torch
import pandas as pd
from zipfile import ZipFile
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
hybrid = None
def getDenseMask(landmarks, h, w):
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
img = np.zeros([h, w], dtype = 'uint8')
RL = RL.reshape(-1, 1, 2).astype('int')
LL = LL.reshape(-1, 1, 2).astype('int')
H = H.reshape(-1, 1, 2).astype('int')
img = cv2.drawContours(img, [RL], -1, 1, -1)
img = cv2.drawContours(img, [LL], -1, 1, -1)
img = cv2.drawContours(img, [H], -1, 2, -1)
return img
def getMasks(landmarks, h, w):
RL = landmarks[0:44]
LL = landmarks[44:94]
H = landmarks[94:]
RL = RL.reshape(-1, 1, 2).astype('int')
LL = LL.reshape(-1, 1, 2).astype('int')
H = H.reshape(-1, 1, 2).astype('int')
RL_mask = np.zeros([h, w], dtype = 'uint8')
LL_mask = np.zeros([h, w], dtype = 'uint8')
H_mask = np.zeros([h, w], dtype = 'uint8')
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1)
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1)
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1)
return RL_mask, LL_mask, H_mask
def drawOnTop(img, landmarks, original_shape):
h, w = original_shape
output = getDenseMask(landmarks, h, w)
image = np.zeros([h, w, 3])
image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float')
image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float')
image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float')
image = np.clip(image, 0, 1)
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:]
# Draw the landmarks as dots
for l in RL:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
for l in LL:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1)
for l in H:
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1)
return image
def loadModel(device):
A, AD, D, U = genMatrixesLungsHeart()
N1 = A.shape[0]
N2 = AD.shape[0]
A = sp.csc_matrix(A).tocoo()
AD = sp.csc_matrix(AD).tocoo()
D = sp.csc_matrix(D).tocoo()
U = sp.csc_matrix(U).tocoo()
D_ = [D.copy()]
U_ = [U.copy()]
config = {}
config['n_nodes'] = [N1, N1, N1, N2, N2, N2]
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()]
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_))
config['latents'] = 64
config['inputsize'] = 1024
f = 32
config['filters'] = [2, f, f, f, f//2, f//2, f//2]
config['skip_features'] = f
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device)
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device)))
hybrid.eval()
return hybrid
def pad_to_square(img):
h, w = img.shape[:2]
if h > w:
padw = (h - w)
auxw = padw % 2
img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant')
padh = 0
auxh = 0
else:
padh = (w - h)
auxh = padh % 2
img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant')
padw = 0
auxw = 0
return img, (padh, padw, auxh, auxw)
def preprocess(input_img):
img, padding = pad_to_square(input_img)
h, w = img.shape[:2]
if h != 1024 or w != 1024:
img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC)
return img, (h, w, padding)
def removePreprocess(output, info):
h, w, padding = info
if h != 1024 or w != 1024:
output = output * h
else:
output = output * 1024
padh, padw, auxh, auxw = padding
output[:, 0] = output[:, 0] - padw//2
output[:, 1] = output[:, 1] - padh//2
return output
def zip_files(files):
with ZipFile("complete_results.zip", "w") as zipObj:
for idx, file in enumerate(files):
zipObj.write(file, arcname=file.split("/")[-1])
return "complete_results.zip"
def segment(input_img):
global hybrid, device
if hybrid is None:
hybrid = loadModel(device)
input_img = cv2.imread(input_img, 0) / 255.0
original_shape = input_img.shape[:2]
img, (h, w, padding) = preprocess(input_img)
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float()
with torch.no_grad():
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2)
output = removePreprocess(output, (h, w, padding))
output = output.astype('int')
outseg = drawOnTop(input_img, output, original_shape)
seg_to_save = (outseg.copy() * 255).astype('uint8')
cv2.imwrite("tmp/overlap_segmentation.png" , cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR))
RL = output[0:44]
LL = output[44:94]
H = output[94:]
np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d")
np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d")
np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d")
RL_mask, LL_mask, H_mask = getMasks(output, original_shape[0], original_shape[1])
cv2.imwrite("tmp/RL_mask.png", RL_mask)
cv2.imwrite("tmp/LL_mask.png", LL_mask)
cv2.imwrite("tmp/H_mask.png", H_mask)
zip = zip_files(["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png"])
return outseg, ["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png", zip]
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("""
# Chest X-ray HybridGNet Segmentation.
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis."
Instructions:
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format.
2. Click on "Segment Image".
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation.
Please check citations below.
""")
with gr.Tab("Segment Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", height=750)
with gr.Row():
clear_button = gr.Button("Clear")
image_button = gr.Button("Segment Image")
gr.Examples(inputs=image_input, examples=['utils/example1.jpg','utils/example2.jpg','utils/example3.png','utils/example4.jpg'])
with gr.Column():
image_output = gr.Image(type="filepath", height=750)
results = gr.File()
gr.Markdown("""
If you use this code, please cite:
```
@article{gaggion2022TMI,
doi = {10.1109/tmi.2022.3224660},
url = {https://doi.org/10.1109%2Ftmi.2022.3224660},
year = 2022,
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante},
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis},
journal = {{IEEE} Transactions on Medical Imaging}
}
```
This model was trained following the procedure explained on:
```
@misc{gaggion2022ISBI,
title={Multi-center anatomical segmentation with heterogeneous labels via landmark-based models},
author={Nicolás Gaggion and Maria Vakalopoulou and Diego H. Milone and Enzo Ferrante},
year={2022},
eprint={2211.07395},
archivePrefix={arXiv},
primaryClass={eess.IV}
}
```
Example images extracted from Wikipedia, released under:
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg
Author: Nicolás Gaggion
Website: [ngaggion.github.io](https://ngaggion.github.io/)
""")
clear_button.click(lambda: None, None, image_input, queue=False)
clear_button.click(lambda: None, None, image_output, queue=False)
image_button.click(segment, inputs=image_input, outputs=[image_output, results], queue=False)
demo.launch()