|
import numpy as np |
|
import gradio as gr |
|
import cv2 |
|
|
|
from models.HybridGNet2IGSC import Hybrid |
|
from utils.utils import scipy_to_torch_sparse, genMatrixesLungsHeart |
|
import scipy.sparse as sp |
|
import torch |
|
import pandas as pd |
|
from zipfile import ZipFile |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
hybrid = None |
|
|
|
def getDenseMask(landmarks, h, w): |
|
|
|
RL = landmarks[0:44] |
|
LL = landmarks[44:94] |
|
H = landmarks[94:] |
|
|
|
img = np.zeros([h, w], dtype = 'uint8') |
|
|
|
RL = RL.reshape(-1, 1, 2).astype('int') |
|
LL = LL.reshape(-1, 1, 2).astype('int') |
|
H = H.reshape(-1, 1, 2).astype('int') |
|
|
|
img = cv2.drawContours(img, [RL], -1, 1, -1) |
|
img = cv2.drawContours(img, [LL], -1, 1, -1) |
|
img = cv2.drawContours(img, [H], -1, 2, -1) |
|
|
|
return img |
|
|
|
def getMasks(landmarks, h, w): |
|
|
|
RL = landmarks[0:44] |
|
LL = landmarks[44:94] |
|
H = landmarks[94:] |
|
|
|
RL = RL.reshape(-1, 1, 2).astype('int') |
|
LL = LL.reshape(-1, 1, 2).astype('int') |
|
H = H.reshape(-1, 1, 2).astype('int') |
|
|
|
RL_mask = np.zeros([h, w], dtype = 'uint8') |
|
LL_mask = np.zeros([h, w], dtype = 'uint8') |
|
H_mask = np.zeros([h, w], dtype = 'uint8') |
|
|
|
RL_mask = cv2.drawContours(RL_mask, [RL], -1, 255, -1) |
|
LL_mask = cv2.drawContours(LL_mask, [LL], -1, 255, -1) |
|
H_mask = cv2.drawContours(H_mask, [H], -1, 255, -1) |
|
|
|
return RL_mask, LL_mask, H_mask |
|
|
|
def drawOnTop(img, landmarks, original_shape): |
|
h, w = original_shape |
|
output = getDenseMask(landmarks, h, w) |
|
|
|
image = np.zeros([h, w, 3]) |
|
image[:,:,0] = img + 0.3 * (output == 1).astype('float') - 0.1 * (output == 2).astype('float') |
|
image[:,:,1] = img + 0.3 * (output == 2).astype('float') - 0.1 * (output == 1).astype('float') |
|
image[:,:,2] = img - 0.1 * (output == 1).astype('float') - 0.2 * (output == 2).astype('float') |
|
|
|
image = np.clip(image, 0, 1) |
|
|
|
RL, LL, H = landmarks[0:44], landmarks[44:94], landmarks[94:] |
|
|
|
|
|
|
|
for l in RL: |
|
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1) |
|
for l in LL: |
|
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 0, 1), -1) |
|
for l in H: |
|
image = cv2.circle(image, (int(l[0]), int(l[1])), 5, (1, 1, 0), -1) |
|
|
|
return image |
|
|
|
|
|
def loadModel(device): |
|
A, AD, D, U = genMatrixesLungsHeart() |
|
N1 = A.shape[0] |
|
N2 = AD.shape[0] |
|
|
|
A = sp.csc_matrix(A).tocoo() |
|
AD = sp.csc_matrix(AD).tocoo() |
|
D = sp.csc_matrix(D).tocoo() |
|
U = sp.csc_matrix(U).tocoo() |
|
|
|
D_ = [D.copy()] |
|
U_ = [U.copy()] |
|
|
|
config = {} |
|
|
|
config['n_nodes'] = [N1, N1, N1, N2, N2, N2] |
|
A_ = [A.copy(), A.copy(), A.copy(), AD.copy(), AD.copy(), AD.copy()] |
|
|
|
A_t, D_t, U_t = ([scipy_to_torch_sparse(x).to(device) for x in X] for X in (A_, D_, U_)) |
|
|
|
config['latents'] = 64 |
|
config['inputsize'] = 1024 |
|
|
|
f = 32 |
|
config['filters'] = [2, f, f, f, f//2, f//2, f//2] |
|
config['skip_features'] = f |
|
|
|
hybrid = Hybrid(config.copy(), D_t, U_t, A_t).to(device) |
|
hybrid.load_state_dict(torch.load("weights/weights.pt", map_location=torch.device(device))) |
|
hybrid.eval() |
|
|
|
return hybrid |
|
|
|
|
|
def pad_to_square(img): |
|
h, w = img.shape[:2] |
|
|
|
if h > w: |
|
padw = (h - w) |
|
auxw = padw % 2 |
|
img = np.pad(img, ((0, 0), (padw//2, padw//2 + auxw)), 'constant') |
|
|
|
padh = 0 |
|
auxh = 0 |
|
|
|
else: |
|
padh = (w - h) |
|
auxh = padh % 2 |
|
img = np.pad(img, ((padh//2, padh//2 + auxh), (0, 0)), 'constant') |
|
|
|
padw = 0 |
|
auxw = 0 |
|
|
|
return img, (padh, padw, auxh, auxw) |
|
|
|
|
|
def preprocess(input_img): |
|
img, padding = pad_to_square(input_img) |
|
|
|
h, w = img.shape[:2] |
|
if h != 1024 or w != 1024: |
|
img = cv2.resize(img, (1024, 1024), interpolation = cv2.INTER_CUBIC) |
|
|
|
return img, (h, w, padding) |
|
|
|
|
|
def removePreprocess(output, info): |
|
h, w, padding = info |
|
|
|
if h != 1024 or w != 1024: |
|
output = output * h |
|
else: |
|
output = output * 1024 |
|
|
|
padh, padw, auxh, auxw = padding |
|
|
|
output[:, 0] = output[:, 0] - padw//2 |
|
output[:, 1] = output[:, 1] - padh//2 |
|
|
|
return output |
|
|
|
|
|
def zip_files(files): |
|
with ZipFile("complete_results.zip", "w") as zipObj: |
|
for idx, file in enumerate(files): |
|
zipObj.write(file, arcname=file.split("/")[-1]) |
|
return "complete_results.zip" |
|
|
|
|
|
def segment(input_img): |
|
global hybrid, device |
|
|
|
if hybrid is None: |
|
hybrid = loadModel(device) |
|
|
|
input_img = cv2.imread(input_img, 0) / 255.0 |
|
original_shape = input_img.shape[:2] |
|
|
|
img, (h, w, padding) = preprocess(input_img) |
|
|
|
data = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).to(device).float() |
|
|
|
with torch.no_grad(): |
|
output = hybrid(data)[0].cpu().numpy().reshape(-1, 2) |
|
|
|
output = removePreprocess(output, (h, w, padding)) |
|
|
|
output = output.astype('int') |
|
|
|
outseg = drawOnTop(input_img, output, original_shape) |
|
|
|
seg_to_save = (outseg.copy() * 255).astype('uint8') |
|
cv2.imwrite("tmp/overlap_segmentation.png" , cv2.cvtColor(seg_to_save, cv2.COLOR_RGB2BGR)) |
|
|
|
RL = output[0:44] |
|
LL = output[44:94] |
|
H = output[94:] |
|
|
|
np.savetxt("tmp/RL_landmarks.txt", RL, delimiter=" ", fmt="%d") |
|
np.savetxt("tmp/LL_landmarks.txt", LL, delimiter=" ", fmt="%d") |
|
np.savetxt("tmp/H_landmarks.txt", H, delimiter=" ", fmt="%d") |
|
|
|
RL_mask, LL_mask, H_mask = getMasks(output, original_shape[0], original_shape[1]) |
|
|
|
cv2.imwrite("tmp/RL_mask.png", RL_mask) |
|
cv2.imwrite("tmp/LL_mask.png", LL_mask) |
|
cv2.imwrite("tmp/H_mask.png", H_mask) |
|
|
|
zip = zip_files(["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png"]) |
|
|
|
return outseg, ["tmp/RL_landmarks.txt", "tmp/LL_landmarks.txt", "tmp/H_landmarks.txt", "tmp/RL_mask.png", "tmp/LL_mask.png", "tmp/H_mask.png", "tmp/overlap_segmentation.png", zip] |
|
|
|
if __name__ == "__main__": |
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.Markdown(""" |
|
# Chest X-ray HybridGNet Segmentation. |
|
|
|
Demo of the HybridGNet model introduced in "Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis." |
|
|
|
Instructions: |
|
1. Upload a chest X-ray image (PA or AP) in PNG or JPEG format. |
|
2. Click on "Segment Image". |
|
|
|
Note: Pre-processing is not needed, it will be done automatically and removed after the segmentation. |
|
|
|
Please check citations below. |
|
""") |
|
|
|
with gr.Tab("Segment Image"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="filepath", height=750) |
|
|
|
with gr.Row(): |
|
clear_button = gr.Button("Clear") |
|
image_button = gr.Button("Segment Image") |
|
|
|
gr.Examples(inputs=image_input, examples=['utils/example1.jpg','utils/example2.jpg','utils/example3.png','utils/example4.jpg']) |
|
|
|
with gr.Column(): |
|
image_output = gr.Image(type="filepath", height=750) |
|
results = gr.File() |
|
|
|
gr.Markdown(""" |
|
If you use this code, please cite: |
|
|
|
``` |
|
@article{gaggion2022TMI, |
|
doi = {10.1109/tmi.2022.3224660}, |
|
url = {https://doi.org/10.1109%2Ftmi.2022.3224660}, |
|
year = 2022, |
|
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})}, |
|
author = {Nicolas Gaggion and Lucas Mansilla and Candelaria Mosquera and Diego H. Milone and Enzo Ferrante}, |
|
title = {Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis}, |
|
journal = {{IEEE} Transactions on Medical Imaging} |
|
} |
|
``` |
|
|
|
This model was trained following the procedure explained on: |
|
|
|
``` |
|
@misc{gaggion2022ISBI, |
|
title={Multi-center anatomical segmentation with heterogeneous labels via landmark-based models}, |
|
author={Nicolás Gaggion and Maria Vakalopoulou and Diego H. Milone and Enzo Ferrante}, |
|
year={2022}, |
|
eprint={2211.07395}, |
|
archivePrefix={arXiv}, |
|
primaryClass={eess.IV} |
|
} |
|
``` |
|
|
|
Example images extracted from Wikipedia, released under: |
|
1. CC0 Universial Public Domain. Source: https://commons.wikimedia.org/wiki/File:Normal_posteroanterior_(PA)_chest_radiograph_(X-ray).jpg |
|
2. Creative Commons Attribution-Share Alike 4.0 International. Source: https://commons.wikimedia.org/wiki/File:Chest_X-ray.jpg |
|
3. Creative Commons Attribution 3.0 Unported. Source https://commons.wikimedia.org/wiki/File:Implantable_cardioverter_defibrillator_chest_X-ray.jpg |
|
4. Creative Commons Attribution-Share Alike 3.0 Unported. Source: https://commons.wikimedia.org/wiki/File:Medical_X-Ray_imaging_PRD06_nevit.jpg |
|
|
|
Author: Nicolás Gaggion |
|
Website: [ngaggion.github.io](https://ngaggion.github.io/) |
|
|
|
""") |
|
|
|
|
|
clear_button.click(lambda: None, None, image_input, queue=False) |
|
clear_button.click(lambda: None, None, image_output, queue=False) |
|
|
|
image_button.click(segment, inputs=image_input, outputs=[image_output, results], queue=False) |
|
|
|
demo.launch() |
|
|