Spaces:
Runtime error
Runtime error
from torch_geometric.nn.conv import MessagePassing | |
from torch_geometric.nn.conv.cheb_conv import ChebConv | |
from torch_geometric.nn.inits import zeros, normal | |
# We change the default initialization from zeros to a normal distribution | |
class ChebConv(ChebConv): | |
def reset_parameters(self): | |
for lin in self.lins: | |
normal(lin, mean = 0, std = 0.1) | |
#lin.reset_parameters() | |
normal(self.bias, mean = 0, std = 0.1) | |
#zeros(self.bias) | |
# Pooling from COMA: https://github.com/pixelite1201/pytorch_coma/blob/master/layers.py | |
class Pool(MessagePassing): | |
def __init__(self): | |
# source_to_target is the default value for flow, but is specified here for explicitness | |
super(Pool, self).__init__(flow='source_to_target') | |
def forward(self, x, pool_mat, dtype=None): | |
pool_mat = pool_mat.transpose(0, 1) | |
out = self.propagate(edge_index=pool_mat._indices(), x=x, norm=pool_mat._values(), size=pool_mat.size()) | |
return out | |
def message(self, x_j, norm): | |
return norm.view(1, -1, 1) * x_j | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class residualBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride=1): | |
""" | |
Args: | |
in_channels (int): Number of input channels. | |
out_channels (int): Number of output channels. | |
stride (int): Controls the stride. | |
""" | |
super(residualBlock, self).__init__() | |
self.skip = nn.Sequential() | |
if stride != 1 or in_channels != out_channels: | |
self.skip = nn.Sequential( | |
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(out_channels, track_running_stats=False)) | |
else: | |
self.skip = None | |
self.block = nn.Sequential(nn.BatchNorm2d(in_channels, track_running_stats=False), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(in_channels, out_channels, 3, padding=1), | |
nn.BatchNorm2d(out_channels, track_running_stats=False), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, 3, padding=1) | |
) | |
def forward(self, x): | |
identity = x | |
out = self.block(x) | |
if self.skip is not None: | |
identity = self.skip(x) | |
out += identity | |
out = F.relu(out) | |
return out |