File size: 7,024 Bytes
e87a462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.modelUtils import ChebConv, Pool, residualBlock
import torchvision.ops.roi_align as roi_align

import numpy as np

class EncoderConv(nn.Module):
    def __init__(self, latents = 64, hw = 32):
        super(EncoderConv, self).__init__()
        
        self.latents = latents
        self.c = 4
        
        self.size = self.c * np.array([2,4,8,16,32], dtype = np.intc)
        
        self.maxpool = nn.MaxPool2d(2)
        
        self.dconv_down1 = residualBlock(1, self.size[0])
        self.dconv_down2 = residualBlock(self.size[0], self.size[1])
        self.dconv_down3 = residualBlock(self.size[1], self.size[2])
        self.dconv_down4 = residualBlock(self.size[2], self.size[3])
        self.dconv_down5 = residualBlock(self.size[3], self.size[4])
        self.dconv_down6 = residualBlock(self.size[4], self.size[4])
        
        self.fc_mu = nn.Linear(in_features=self.size[4]*hw*hw, out_features=self.latents)
        self.fc_logvar = nn.Linear(in_features=self.size[4]*hw*hw, out_features=self.latents)

    def forward(self, x):
        x = self.dconv_down1(x)
        x = self.maxpool(x)

        x = self.dconv_down2(x)
        x = self.maxpool(x)
        
        conv3 = self.dconv_down3(x)
        x = self.maxpool(conv3)
        
        conv4 = self.dconv_down4(x)
        x = self.maxpool(conv4)
        
        conv5 = self.dconv_down5(x)
        x = self.maxpool(conv5)
        
        conv6 = self.dconv_down6(x)
        
        x = conv6.view(conv6.size(0), -1) # flatten batch of multi-channel feature maps to a batch of feature vectors
        
        x_mu = self.fc_mu(x)
        x_logvar = self.fc_logvar(x)
                
        return x_mu, x_logvar, conv6, conv5


class SkipBlock(nn.Module):
    def __init__(self, in_filters, window):
        super(SkipBlock, self).__init__()
        
        self.window = window
        self.graphConv_pre = ChebConv(in_filters, 2, 1, bias = False) 
    
    def lookup(self, pos, layer, salida = (1,1)):
        B = pos.shape[0]
        N = pos.shape[1]
        F = layer.shape[1]
        h = layer.shape[-1]
        
        ## Scale from [0,1] to [0, h]
        pos = pos * h
        
        _x1 = (self.window[0] // 2) * 1.0
        _x2 = (self.window[0] // 2 + 1) * 1.0
        _y1 = (self.window[1] // 2) * 1.0
        _y2 = (self.window[1] // 2 + 1) * 1.0
        
        boxes = []
        for batch in range(0, B):
            x1 = pos[batch,:,0].reshape(-1, 1) - _x1
            x2 = pos[batch,:,0].reshape(-1, 1) + _x2
            y1 = pos[batch,:,1].reshape(-1, 1) - _y1
            y2 = pos[batch,:,1].reshape(-1, 1) + _y2
            
            aux = torch.cat([x1, y1, x2, y2], axis = 1)            
            boxes.append(aux)
                    
        skip = roi_align(layer, boxes, output_size = salida, aligned=True)
        vista = skip.view([B, N, -1])

        return vista
    
    def forward(self, x, adj, conv_layer):
        pos = self.graphConv_pre(x, adj)
        skip = self.lookup(pos, conv_layer)
        
        return torch.cat((x, skip, pos), axis = 2), pos
        
    
class Hybrid(nn.Module):
    def __init__(self, config, downsample_matrices, upsample_matrices, adjacency_matrices):
        super(Hybrid, self).__init__()
        
        self.config = config
        hw = config['inputsize'] // 32
        self.z = config['latents']
        self.encoder = EncoderConv(latents = self.z, hw = hw)
        
        self.downsample_matrices = downsample_matrices
        self.upsample_matrices = upsample_matrices
        self.adjacency_matrices = adjacency_matrices
        self.kld_weight = 1e-5
                
        n_nodes = config['n_nodes']
        self.filters = config['filters']
        self.K = 6
        self.window = (3,3)
        
        # Genero la capa fully connected del decoder
        outshape = self.filters[-1] * n_nodes[-1]          
        self.dec_lin = torch.nn.Linear(self.z, outshape)
                
        self.normalization2u = torch.nn.InstanceNorm1d(self.filters[1])
        self.normalization3u = torch.nn.InstanceNorm1d(self.filters[2])
        self.normalization4u = torch.nn.InstanceNorm1d(self.filters[3])
        self.normalization5u = torch.nn.InstanceNorm1d(self.filters[4])
        self.normalization6u = torch.nn.InstanceNorm1d(self.filters[5])
        
        outsize1 = self.encoder.size[4]
        outsize2 = self.encoder.size[4]  
                     
        # Guardo las capas de convoluciones en grafo
        self.graphConv_up6 = ChebConv(self.filters[6], self.filters[5], self.K)
        self.graphConv_up5 = ChebConv(self.filters[5], self.filters[4], self.K)       
        
        self.SC_1 = SkipBlock(self.filters[4], self.window)
        
        self.graphConv_up4 = ChebConv(self.filters[4] + outsize1 + 2, self.filters[3], self.K)        
        self.graphConv_up3 = ChebConv(self.filters[3], self.filters[2], self.K)
        
        self.SC_2 = SkipBlock(self.filters[2], self.window)
        
        self.graphConv_up2 = ChebConv(self.filters[2] + outsize2 + 2, self.filters[1], self.K)
        self.graphConv_up1 = ChebConv(self.filters[1], self.filters[0], 1, bias = False)
                
        self.pool = Pool()
        
        self.reset_parameters()
        
    def reset_parameters(self):
        torch.nn.init.normal_(self.dec_lin.weight, 0, 0.1)


    def sampling(self, mu, log_var):
        std = torch.exp(0.5*log_var)
        eps = torch.randn_like(std)
        return eps.mul(std).add_(mu) 
    
        
    def forward(self, x):
        self.mu, self.log_var, conv6, conv5 = self.encoder(x)

        if self.training:
            z = self.sampling(self.mu, self.log_var)
        else:
            z = self.mu
            
        x = self.dec_lin(z)
        x = F.relu(x)
        
        x = x.reshape(x.shape[0], -1, self.filters[-1])
        
        x = self.graphConv_up6(x, self.adjacency_matrices[5]._indices())
        x = self.normalization6u(x)
        x = F.relu(x)
        
        x = self.graphConv_up5(x, self.adjacency_matrices[4]._indices())
        x = self.normalization5u(x)
        x = F.relu(x)
        
        x, pos1 = self.SC_1(x, self.adjacency_matrices[3]._indices(), conv6)
        
        x = self.graphConv_up4(x, self.adjacency_matrices[3]._indices())
        x = self.normalization4u(x)
        x = F.relu(x)
        
        x = self.pool(x, self.upsample_matrices[0])
        
        x = self.graphConv_up3(x, self.adjacency_matrices[2]._indices())
        x = self.normalization3u(x)
        x = F.relu(x)
        
        x, pos2 = self.SC_2(x, self.adjacency_matrices[1]._indices(), conv5)
        
        x = self.graphConv_up2(x, self.adjacency_matrices[1]._indices())
        x = self.normalization2u(x)
        x = F.relu(x)
        
        x = self.graphConv_up1(x, self.adjacency_matrices[0]._indices()) # Sin relu y sin bias
        
        return x, pos1, pos2