import os import random import sys from typing import Sequence, Mapping, Any, Union import torch import gradio as gr from huggingface_hub import hf_hub_download import spaces from PIL import Image from folder_paths import folder_paths # Append ComfyUI path to sys.path current_dir = os.path.dirname(os.path.abspath(__file__)) comfyui_path = os.path.join(current_dir, "ComfyUI") sys.path.append(comfyui_path) # Import Comfy modules from comfy import model_management from nodes import NODE_CLASS_MAPPINGS # Helper function to get values from objects def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: try: return obj[index] except KeyError: return obj["result"][index] # Download models from Hugging Face def download_models(): models = [ ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"), ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"), ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "text_encoders"), ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"), ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "diffusion_models"), ("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision") ] for repo_id, filename, model_type in models: try: model_dir = os.path.join(models_dir, model_type) os.makedirs(model_dir, exist_ok=True) print(f"Baixando {filename} de {repo_id}...") hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir) folder_paths.add_model_folder_path(model_type, model_dir) except Exception as e: print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}") continue # Configuração de Diretórios BASE_DIR = os.path.dirname(os.path.realpath(__file__)) output_dir = os.path.join(BASE_DIR, "output") models_dir = os.path.join(BASE_DIR, "models") os.makedirs(output_dir, exist_ok=True) os.makedirs(models_dir, exist_ok=True) folder_paths.set_output_directory(output_dir) # Download and load models download_models() # Load models globally intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() dualcliploader_357 = dualcliploader.load_clip( clip_name1="t5xxl_fp16.safetensors", clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", type="flux" ) clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() clip_vision = clipvisionloader.load_clip( clip_name="model.safetensors" ) stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() stylemodelloader_441 = stylemodelloader.load_style_model( style_model_name="flux1-redux-dev.safetensors" ) vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() vaeloader_359 = vaeloader.load_vae( vae_name="ae.safetensors" ) # Pre-load models model_loaders = [dualcliploader_357, vaeloader_359, clip_vision, stylemodelloader_441] valid_models = [ getattr(loader[0], 'patcher', loader[0]) for loader in model_loaders if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) ] model_management.load_models_gpu(valid_models) # Function to generate images @spaces.GPU(duration=60) # Adjust duration as needed def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps): try: with torch.inference_mode(): # Codificar texto cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() encoded_text = cliptextencode.encode( text=prompt, clip=dualcliploader_357[0] ) # Carregar e processar imagem loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() loaded_image = loadimage.load_image(image=input_image) # Flux Guidance fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() flux_guidance = fluxguidance.append( guidance=guidance, conditioning=encoded_text[0] ) # Redux Advanced reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() redux_result = reduxadvanced.apply_stylemodel( downsampling_factor=downsampling_factor, downsampling_function="area", mode="keep aspect ratio", weight=weight, conditioning=flux_guidance[0], style_model=stylemodelloader_441[0], clip_vision=clip_vision[0], image=loaded_image[0] ) # Empty Latent emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() empty_latent = emptylatentimage.generate( width=width, height=height, batch_size=batch_size ) # KSampler ksampler = NODE_CLASS_MAPPINGS["KSampler"]() sampled = ksampler.sample( seed=seed, steps=steps, cfg=1, sampler_name="euler", scheduler="simple", denoise=1, model=stylemodelloader_441[0], positive=redux_result[0], negative=flux_guidance[0], latent_image=empty_latent[0] ) # Decodificar VAE vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() decoded = vaedecode.decode( samples=sampled[0], vae=vaeloader_359[0] ) # Salvar imagem temp_filename = f"Flux_{random.randint(0, 99999)}.png" temp_path = os.path.join(output_dir, temp_filename) Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path) return temp_path except Exception as e: print(f"Erro ao gerar imagem: {str(e)}") return None # Gradio Interface with gr.Blocks() as app: gr.Markdown("# FLUX Redux Image Generator") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox( label="Prompt", placeholder="Enter your prompt here...", lines=5 ) input_image = gr.Image( label="Input Image", type="filepath" ) with gr.Row(): with gr.Column(): lora_weight = gr.Slider( minimum=0, maximum=2, step=0.1, value=0.6, label="LoRA Weight" ) guidance = gr.Slider( minimum=0, maximum=20, step=0.1, value=3.5, label="Guidance" ) downsampling_factor = gr.Slider( minimum=1, maximum=8, step=1, value=3, label="Downsampling Factor" ) weight = gr.Slider( minimum=0, maximum=2, step=0.1, value=1.0, label="Model Weight" ) with gr.Column(): seed = gr.Number( value=random.randint(1, 2**64), label="Seed", precision=0 ) width = gr.Number( value=1024, label="Width", precision=0 ) height = gr.Number( value=1024, label="Height", precision=0 ) batch_size = gr.Number( value=1, label="Batch Size", precision=0 ) steps = gr.Number( value=20, label="Steps", precision=0 ) generate_btn = gr.Button("Generate Image") with gr.Column(): output_image = gr.Image(label="Generated Image", type="filepath") generate_btn.click( fn=generate_image, inputs=[prompt_input, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps], outputs=[output_image] ) if __name__ == "__main__": app.launch()