import os import sys import random import torch from pathlib import Path from PIL import Image import gradio as gr from huggingface_hub import hf_hub_download import spaces from typing import Union, Sequence, Mapping, Any # Configuração inicial e diagnóstico CUDA print("Python version:", sys.version) print("Torch version:", torch.__version__) print("CUDA disponível:", torch.cuda.is_available()) print("Quantidade de GPUs:", torch.cuda.device_count()) if torch.cuda.is_available(): print("GPU atual:", torch.cuda.get_device_name(0)) # Adicionar o caminho da pasta ComfyUI ao sys.path current_dir = os.path.dirname(os.path.abspath(__file__)) comfyui_path = os.path.join(current_dir, "ComfyUI") sys.path.append(comfyui_path) # Importar ComfyUI components from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes from comfy import model_management import folder_paths # Configuração de diretórios BASE_DIR = os.path.dirname(os.path.realpath(__file__)) output_dir = os.path.join(BASE_DIR, "output") os.makedirs(output_dir, exist_ok=True) folder_paths.set_output_directory(output_dir) # Inicializar nós extras print("Inicializando nós extras...") init_extra_nodes() # Helper function def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: try: return obj[index] except KeyError: return obj["result"][index] # Baixar modelos necessários def download_models(): print("Baixando modelos...") models = [ ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"), ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"), ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"), ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"), ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors.safetensors", "models/diffusion_models"), ("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision"), ("nftnik/NFTNIK-FLUX.1-dev-LoRA", "NFTNIK_FLUX.1[dev]_LoRA.safetensors", "models/lora") ] for repo_id, filename, local_dir in models: os.makedirs(local_dir, exist_ok=True) hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) # Download models antes de inicializar download_models() # Inicializar modelos print("Inicializando modelos...") with torch.inference_mode(): # Initialize nodes intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() dualcliploader_357 = dualcliploader.load_clip( clip_name1="models/text_encoders/t5xxl_fp16.safetensors", clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", type="flux", ) stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() stylemodelloader_441 = stylemodelloader.load_style_model( style_model_name="models/style_models/flux1-redux-dev.safetensors" ) vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors") # Carregar modelos na GPU model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441] valid_models = [ getattr(loader[0], 'patcher', loader[0]) for loader in model_loaders if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) ] model_management.load_models_gpu(valid_models) @spaces.GPU def generate_image(prompt, input_image, lora_weight, progress=gr.Progress(track_tqdm=True)): """Função principal de geração com monitoramento de progresso""" try: with torch.inference_mode(): # Codificar texto cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() encoded_text = cliptextencode.encode( text=prompt, clip=get_value_at_index(dualcliploader_357, 0) ) # Carregar LoRA loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() lora_model = loraloadermodelonly.load_lora_model_only( lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors", strength_model=lora_weight, model=get_value_at_index(stylemodelloader_441, 0) ) # Processar imagem loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() loaded_image = loadimage.load_image(image=input_image) # Decodificar vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() decoded = vaedecode.decode( samples=get_value_at_index(lora_model, 0), vae=get_value_at_index(vaeloader_359, 0) ) # Salvar imagem temp_filename = f"Flux_{random.randint(0, 99999)}.png" temp_path = os.path.join(output_dir, temp_filename) Image.fromarray((get_value_at_index(decoded, 0) * 255).astype("uint8")).save(temp_path) return temp_path except Exception as e: print(f"Erro ao gerar imagem: {str(e)}") return None # Interface Gradio with gr.Blocks() as app: gr.Markdown("# Gerador de Imagens FLUX Redux") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5) input_image = gr.Image(label="Imagem de Entrada", type="filepath") lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA") generate_btn = gr.Button("Gerar Imagem") with gr.Column(): output_image = gr.Image(label="Imagem Gerada", type="filepath") generate_btn.click( fn=generate_image, inputs=[prompt_input, input_image, lora_weight], outputs=[output_image] ) if __name__ == "__main__": app.launch()