import os import sys import random import torch from pathlib import Path from PIL import Image import gradio as gr from huggingface_hub import hf_hub_download import spaces from typing import Union, Sequence, Mapping, Any # Configuração inicial e diagnóstico CUDA print("Python version:", sys.version) print("Torch version:", torch.__version__) print("CUDA disponível:", torch.cuda.is_available()) print("Quantidade de GPUs:", torch.cuda.device_count()) if torch.cuda.is_available(): print("GPU atual:", torch.cuda.get_device_name(0)) # Adicionar o caminho da pasta ComfyUI ao sys.path current_dir = os.path.dirname(os.path.abspath(__file__)) comfyui_path = os.path.join(current_dir, "ComfyUI") sys.path.append(comfyui_path) # Importar ComfyUI components sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "ComfyUI/comfy")) import comfy.diffusers_load import comfy.samplers import comfy.sample import comfy.sd import comfy.utils from comfy.cli_args import args import folder_paths # Importar nós do ComfyUI from nodes import CLIPTextEncode, VAEDecode, EmptyLatentImage, VAEEncode # Configuração de diretórios BASE_DIR = os.path.dirname(os.path.realpath(__file__)) output_dir = os.path.join(BASE_DIR, "output") os.makedirs(output_dir, exist_ok=True) folder_paths.set_output_directory(output_dir) # Helper function def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: try: return obj[index] except KeyError: return obj["result"][index] # Baixar modelos def download_models(): print("Baixando modelos...") models = [ ("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"), ("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"), ("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"), ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"), ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/diffusion_models"), ("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision") ] for repo_id, filename, local_dir in models: try: os.makedirs(local_dir, exist_ok=True) print(f"Baixando {filename} de {repo_id}...") hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) except Exception as e: print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}") continue # Download models no início download_models() # Inicializar modelos print("Inicializando modelos...") with torch.inference_mode(): clip_text_encode = CLIPTextEncode() vae_decode = VAEDecode() vae_encode = VAEEncode() empty_latent = EmptyLatentImage() @spaces.GPU def generate_image(prompt, input_image, strength, progress=gr.Progress(track_tqdm=True)): try: with torch.inference_mode(): # Seu código de geração aqui pass except Exception as e: print(f"Erro ao gerar imagem: {str(e)}") return None # Interface Gradio with gr.Blocks() as app: gr.Markdown("# Gerador de Imagens FLUX") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5) input_image = gr.Image(label="Imagem de Entrada", type="filepath") strength = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Força") generate_btn = gr.Button("Gerar Imagem") with gr.Column(): output_image = gr.Image(label="Imagem Gerada", type="filepath") generate_btn.click( fn=generate_image, inputs=[prompt_input, input_image, strength], outputs=[output_image] ) if __name__ == "__main__": app.launch()