Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_app.py
Browse files- gradio_app.py +42 -197
gradio_app.py
CHANGED
@@ -8,8 +8,6 @@ import gradio as gr
|
|
8 |
from PIL import Image
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
-
import spaces # Se estiver no Hugging Face Spaces. Se não, pode remover.
|
12 |
-
|
13 |
#####################################
|
14 |
# 1. Funções auxiliares de caminho e import
|
15 |
#####################################
|
@@ -36,45 +34,18 @@ def add_comfyui_directory_to_sys_path() -> None:
|
|
36 |
else:
|
37 |
print("Não foi possível encontrar o diretório ComfyUI.")
|
38 |
|
39 |
-
def add_extra_model_paths() -> None:
|
40 |
-
"""
|
41 |
-
Carrega configurações extras de caminhos de modelos, se existir
|
42 |
-
um arquivo 'extra_model_paths.yaml'.
|
43 |
-
"""
|
44 |
-
try:
|
45 |
-
from main import load_extra_path_config
|
46 |
-
except ImportError:
|
47 |
-
# Dependendo da versão do ComfyUI, pode estar em 'utils.extra_config'
|
48 |
-
from utils.extra_config import load_extra_path_config
|
49 |
-
|
50 |
-
extra_model_paths = find_path("extra_model_paths.yaml")
|
51 |
-
if extra_model_paths is not None:
|
52 |
-
load_extra_path_config(extra_model_paths)
|
53 |
-
else:
|
54 |
-
print("Arquivo extra_model_paths.yaml não foi encontrado.")
|
55 |
-
|
56 |
def import_custom_nodes() -> None:
|
57 |
"""
|
58 |
-
|
59 |
-
similar ao que ocorre no segundo script.
|
60 |
"""
|
61 |
-
import asyncio
|
62 |
-
import execution
|
63 |
from nodes import init_extra_nodes
|
64 |
-
import server
|
65 |
-
|
66 |
-
loop = asyncio.new_event_loop()
|
67 |
-
asyncio.set_event_loop(loop)
|
68 |
-
server_instance = server.PromptServer(loop)
|
69 |
-
execution.PromptQueue(server_instance)
|
70 |
init_extra_nodes()
|
71 |
|
72 |
#####################################
|
73 |
-
# 2.
|
74 |
#####################################
|
75 |
|
76 |
add_comfyui_directory_to_sys_path()
|
77 |
-
add_extra_model_paths()
|
78 |
import_custom_nodes()
|
79 |
|
80 |
#####################################
|
@@ -97,47 +68,42 @@ from nodes import (
|
|
97 |
# 4. Download de modelos (ajuste conforme sua necessidade)
|
98 |
#####################################
|
99 |
|
100 |
-
#
|
101 |
os.makedirs("models/text_encoders", exist_ok=True)
|
102 |
os.makedirs("models/style_models", exist_ok=True)
|
103 |
os.makedirs("models/diffusion_models", exist_ok=True)
|
104 |
os.makedirs("models/vae", exist_ok=True)
|
105 |
os.makedirs("models/clip_vision", exist_ok=True)
|
106 |
|
|
|
107 |
try:
|
108 |
-
print("Baixando
|
109 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
|
110 |
filename="flux1-redux-dev.safetensors",
|
111 |
local_dir="models/style_models")
|
112 |
-
print("Baixando T5 (t5xxl_fp16.safetensors)...")
|
113 |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
|
114 |
filename="t5xxl_fp16.safetensors",
|
115 |
local_dir="models/text_encoders")
|
116 |
-
|
117 |
-
print("Baixando CLIP L (ViT-L-14) ...")
|
118 |
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
|
119 |
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
120 |
local_dir="models/text_encoders")
|
121 |
-
print("Baixando VAE (ae.safetensors)...")
|
122 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
123 |
filename="ae.safetensors",
|
124 |
local_dir="models/vae")
|
125 |
-
print("Baixando flux1-dev.safetensors (modelo difusão)...")
|
126 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
127 |
filename="flux1-dev.safetensors",
|
128 |
local_dir="models/diffusion_models")
|
129 |
-
print("Baixando CLIP Vision (model.safetensors)...")
|
130 |
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
|
131 |
filename="model.safetensors",
|
132 |
local_dir="models/clip_vision")
|
133 |
except Exception as e:
|
134 |
-
print("
|
135 |
|
136 |
#####################################
|
137 |
-
# 5.
|
138 |
#####################################
|
139 |
|
140 |
-
#
|
141 |
dualcliploader = DualCLIPLoader()
|
142 |
clip_model = dualcliploader.load_clip(
|
143 |
clip_name1="t5xxl_fp16.safetensors",
|
@@ -145,90 +111,77 @@ clip_model = dualcliploader.load_clip(
|
|
145 |
type="flux"
|
146 |
)
|
147 |
|
148 |
-
# Carregando CLIP Vision
|
149 |
clipvisionloader = CLIPVisionLoader()
|
150 |
clip_vision_model = clipvisionloader.load_clip(
|
151 |
clip_name="model.safetensors"
|
152 |
)
|
153 |
|
154 |
-
# Carregando Style Model
|
155 |
stylemodelloader = StyleModelLoader()
|
156 |
style_model = stylemodelloader.load_style_model(
|
157 |
style_model_name="flux1-redux-dev.safetensors"
|
158 |
)
|
159 |
|
160 |
-
# Carregando VAE
|
161 |
vaeloader = VAELoader()
|
162 |
vae_model = vaeloader.load_vae(
|
163 |
vae_name="ae.safetensors"
|
164 |
)
|
165 |
|
166 |
-
# (Opcional) Se tiver um model UNet, faça UNETLoader, etc.
|
167 |
-
|
168 |
-
# Opcional: Carregar para GPU
|
169 |
model_management.load_models_gpu([
|
170 |
-
|
171 |
])
|
172 |
|
173 |
#####################################
|
174 |
-
# 6.
|
175 |
#####################################
|
176 |
|
177 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
178 |
-
"""Retorna o
|
179 |
try:
|
180 |
return obj[index]
|
181 |
except KeyError:
|
182 |
return obj["result"][index]
|
183 |
|
184 |
-
#####################################
|
185 |
-
# 7. Definir workflow simplificado
|
186 |
-
#####################################
|
187 |
-
|
188 |
-
@spaces.GPU # Se estiver no Hugging Face Spaces. Senão, remova.
|
189 |
def generate_image(
|
190 |
prompt: str,
|
191 |
input_image_path: str,
|
192 |
-
lora_weight: float,
|
193 |
guidance: float,
|
194 |
downsampling_factor: float,
|
195 |
weight: float,
|
196 |
seed: int,
|
197 |
width: int,
|
198 |
height: int,
|
199 |
-
batch_size: int,
|
200 |
steps: int,
|
201 |
progress=gr.Progress(track_tqdm=True)
|
202 |
):
|
203 |
"""
|
204 |
-
Gera imagem usando
|
205 |
"""
|
206 |
try:
|
207 |
# Garantindo repetibilidade do seed
|
208 |
torch.manual_seed(seed)
|
209 |
random.seed(seed)
|
210 |
|
211 |
-
#
|
212 |
cliptextencode = CLIPTextEncode()
|
213 |
encoded_text = cliptextencode.encode(
|
214 |
text=prompt,
|
215 |
clip=get_value_at_index(clip_model, 0)
|
216 |
)
|
217 |
|
218 |
-
#
|
219 |
loadimage = LoadImage()
|
220 |
loaded_image = loadimage.load_image(image=input_image_path)
|
221 |
|
222 |
-
#
|
223 |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
224 |
flux_guided = fluxguidance.append(
|
225 |
guidance=guidance,
|
226 |
conditioning=get_value_at_index(encoded_text, 0)
|
227 |
)
|
228 |
|
229 |
-
#
|
230 |
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
|
231 |
-
|
232 |
downsampling_factor=downsampling_factor,
|
233 |
downsampling_function="area",
|
234 |
mode="keep aspect ratio",
|
@@ -239,163 +192,55 @@ def generate_image(
|
|
239 |
image=get_value_at_index(loaded_image, 0)
|
240 |
)
|
241 |
|
242 |
-
#
|
243 |
-
emptylatent = EmptyLatentImage()
|
244 |
-
empty_latent = emptylatent.generate(
|
245 |
-
width=width,
|
246 |
-
height=height,
|
247 |
-
batch_size=batch_size
|
248 |
-
)
|
249 |
-
|
250 |
-
# 6) KSampler (no ComfyUI atual, há "KSamplerSelect" ou "KSampler")
|
251 |
-
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
|
252 |
-
sampled = ksampler.sample(
|
253 |
-
seed=seed,
|
254 |
-
steps=steps,
|
255 |
-
cfg=1, # Exemplo de CFG = 1
|
256 |
-
sampler_name="euler",
|
257 |
-
scheduler="simple",
|
258 |
-
denoise=1,
|
259 |
-
model=get_value_at_index(style_model, 0), # Usa o style model como UNet? (depende da config)
|
260 |
-
positive=get_value_at_index(redux_result, 0),
|
261 |
-
negative=get_value_at_index(flux_guided, 0),
|
262 |
-
latent_image=get_value_at_index(empty_latent, 0)
|
263 |
-
)
|
264 |
-
|
265 |
-
# 7) Decodificar VAE
|
266 |
vaedecode = VAEDecode()
|
267 |
-
|
268 |
-
samples=get_value_at_index(
|
269 |
vae=get_value_at_index(vae_model, 0)
|
270 |
)
|
271 |
|
272 |
-
#
|
273 |
output_dir = "output"
|
274 |
os.makedirs(output_dir, exist_ok=True)
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
# ou algo no formato [N,C,H,W]. Precisamos converter para PIL:
|
280 |
-
# Se for um batch, pegue o primeiro item. Ajuste se quiser batch maior.
|
281 |
-
image_data = get_value_at_index(decoded, 0)
|
282 |
-
# Normalmente, se for "float [0,1]" em C,H,W:
|
283 |
-
# Precisamos mover pro CPU e converter em numpy
|
284 |
-
if isinstance(image_data, torch.Tensor):
|
285 |
-
image_data = image_data.cpu().numpy()
|
286 |
-
|
287 |
-
# Se a imagem estiver em [C,H,W], transpor para [H,W,C] e escalar 0..255
|
288 |
-
if len(image_data.shape) == 3:
|
289 |
-
image_data = image_data.transpose(1, 2, 0)
|
290 |
-
image_data = (image_data * 255).clip(0, 255).astype("uint8")
|
291 |
-
|
292 |
-
pil_image = Image.fromarray(image_data)
|
293 |
-
pil_image.save(temp_path)
|
294 |
-
|
295 |
-
return temp_path
|
296 |
except Exception as e:
|
297 |
-
print(
|
298 |
return None
|
299 |
|
300 |
#####################################
|
301 |
-
#
|
302 |
#####################################
|
303 |
|
304 |
with gr.Blocks() as app:
|
305 |
-
gr.Markdown("# FLUX Redux Image Generator
|
306 |
-
|
307 |
with gr.Row():
|
308 |
with gr.Column():
|
309 |
-
prompt_input = gr.Textbox(
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
)
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
)
|
318 |
-
|
319 |
-
with gr.Row():
|
320 |
-
with gr.Column():
|
321 |
-
lora_weight = gr.Slider(
|
322 |
-
minimum=0,
|
323 |
-
maximum=2,
|
324 |
-
step=0.1,
|
325 |
-
value=0.6,
|
326 |
-
label="LoRA Weight (não usado nesse fluxo)"
|
327 |
-
)
|
328 |
-
guidance = gr.Slider(
|
329 |
-
minimum=0,
|
330 |
-
maximum=20,
|
331 |
-
step=0.1,
|
332 |
-
value=3.5,
|
333 |
-
label="Guidance"
|
334 |
-
)
|
335 |
-
downsampling_factor = gr.Slider(
|
336 |
-
minimum=1,
|
337 |
-
maximum=8,
|
338 |
-
step=1,
|
339 |
-
value=3,
|
340 |
-
label="Downsampling Factor"
|
341 |
-
)
|
342 |
-
weight = gr.Slider(
|
343 |
-
minimum=0,
|
344 |
-
maximum=2,
|
345 |
-
step=0.1,
|
346 |
-
value=1.0,
|
347 |
-
label="Redux Model Weight"
|
348 |
-
)
|
349 |
-
with gr.Column():
|
350 |
-
seed = gr.Number(
|
351 |
-
value=random.randint(1, 2**64),
|
352 |
-
label="Seed",
|
353 |
-
precision=0
|
354 |
-
)
|
355 |
-
width = gr.Number(
|
356 |
-
value=512,
|
357 |
-
label="Width",
|
358 |
-
precision=0
|
359 |
-
)
|
360 |
-
height = gr.Number(
|
361 |
-
value=512,
|
362 |
-
label="Height",
|
363 |
-
precision=0
|
364 |
-
)
|
365 |
-
batch_size = gr.Number(
|
366 |
-
value=1,
|
367 |
-
label="Batch Size",
|
368 |
-
precision=0
|
369 |
-
)
|
370 |
-
steps = gr.Number(
|
371 |
-
value=20,
|
372 |
-
label="Steps",
|
373 |
-
precision=0
|
374 |
-
)
|
375 |
-
|
376 |
-
generate_btn = gr.Button("Generate Image")
|
377 |
|
378 |
with gr.Column():
|
379 |
-
output_image = gr.Image(label="
|
380 |
|
381 |
generate_btn.click(
|
382 |
fn=generate_image,
|
383 |
inputs=[
|
384 |
-
prompt_input,
|
385 |
-
|
386 |
-
|
387 |
-
guidance,
|
388 |
-
downsampling_factor,
|
389 |
-
weight,
|
390 |
-
seed,
|
391 |
-
width,
|
392 |
-
height,
|
393 |
-
batch_size,
|
394 |
-
steps
|
395 |
],
|
396 |
outputs=[output_image]
|
397 |
)
|
398 |
|
399 |
if __name__ == "__main__":
|
400 |
-
# Você pode usar app.launch(share=True) se quiser compartilhar via link.
|
401 |
app.launch()
|
|
|
8 |
from PIL import Image
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
|
|
11 |
#####################################
|
12 |
# 1. Funções auxiliares de caminho e import
|
13 |
#####################################
|
|
|
34 |
else:
|
35 |
print("Não foi possível encontrar o diretório ComfyUI.")
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def import_custom_nodes() -> None:
|
38 |
"""
|
39 |
+
Inicializa os nós extras do ComfyUI, sem importar o servidor.
|
|
|
40 |
"""
|
|
|
|
|
41 |
from nodes import init_extra_nodes
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
init_extra_nodes()
|
43 |
|
44 |
#####################################
|
45 |
+
# 2. Configurando o ambiente
|
46 |
#####################################
|
47 |
|
48 |
add_comfyui_directory_to_sys_path()
|
|
|
49 |
import_custom_nodes()
|
50 |
|
51 |
#####################################
|
|
|
68 |
# 4. Download de modelos (ajuste conforme sua necessidade)
|
69 |
#####################################
|
70 |
|
71 |
+
# Criando pastas de modelos, se necessário
|
72 |
os.makedirs("models/text_encoders", exist_ok=True)
|
73 |
os.makedirs("models/style_models", exist_ok=True)
|
74 |
os.makedirs("models/diffusion_models", exist_ok=True)
|
75 |
os.makedirs("models/vae", exist_ok=True)
|
76 |
os.makedirs("models/clip_vision", exist_ok=True)
|
77 |
|
78 |
+
# Baixando os modelos necessários
|
79 |
try:
|
80 |
+
print("Baixando modelos...")
|
81 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
|
82 |
filename="flux1-redux-dev.safetensors",
|
83 |
local_dir="models/style_models")
|
|
|
84 |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
|
85 |
filename="t5xxl_fp16.safetensors",
|
86 |
local_dir="models/text_encoders")
|
|
|
|
|
87 |
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
|
88 |
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
89 |
local_dir="models/text_encoders")
|
|
|
90 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
91 |
filename="ae.safetensors",
|
92 |
local_dir="models/vae")
|
|
|
93 |
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
94 |
filename="flux1-dev.safetensors",
|
95 |
local_dir="models/diffusion_models")
|
|
|
96 |
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
|
97 |
filename="model.safetensors",
|
98 |
local_dir="models/clip_vision")
|
99 |
except Exception as e:
|
100 |
+
print("Erro ao baixar modelos:", e)
|
101 |
|
102 |
#####################################
|
103 |
+
# 5. Carregando os modelos do ComfyUI
|
104 |
#####################################
|
105 |
|
106 |
+
# Inicializando nós e modelos
|
107 |
dualcliploader = DualCLIPLoader()
|
108 |
clip_model = dualcliploader.load_clip(
|
109 |
clip_name1="t5xxl_fp16.safetensors",
|
|
|
111 |
type="flux"
|
112 |
)
|
113 |
|
|
|
114 |
clipvisionloader = CLIPVisionLoader()
|
115 |
clip_vision_model = clipvisionloader.load_clip(
|
116 |
clip_name="model.safetensors"
|
117 |
)
|
118 |
|
|
|
119 |
stylemodelloader = StyleModelLoader()
|
120 |
style_model = stylemodelloader.load_style_model(
|
121 |
style_model_name="flux1-redux-dev.safetensors"
|
122 |
)
|
123 |
|
|
|
124 |
vaeloader = VAELoader()
|
125 |
vae_model = vaeloader.load_vae(
|
126 |
vae_name="ae.safetensors"
|
127 |
)
|
128 |
|
|
|
|
|
|
|
129 |
model_management.load_models_gpu([
|
130 |
+
clip_model[0], clip_vision_model[0], style_model[0], vae_model[0]
|
131 |
])
|
132 |
|
133 |
#####################################
|
134 |
+
# 6. Função de geração de imagem
|
135 |
#####################################
|
136 |
|
137 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
138 |
+
"""Retorna o valor no índice especificado."""
|
139 |
try:
|
140 |
return obj[index]
|
141 |
except KeyError:
|
142 |
return obj["result"][index]
|
143 |
|
|
|
|
|
|
|
|
|
|
|
144 |
def generate_image(
|
145 |
prompt: str,
|
146 |
input_image_path: str,
|
|
|
147 |
guidance: float,
|
148 |
downsampling_factor: float,
|
149 |
weight: float,
|
150 |
seed: int,
|
151 |
width: int,
|
152 |
height: int,
|
|
|
153 |
steps: int,
|
154 |
progress=gr.Progress(track_tqdm=True)
|
155 |
):
|
156 |
"""
|
157 |
+
Gera uma imagem usando os nós do ComfyUI.
|
158 |
"""
|
159 |
try:
|
160 |
# Garantindo repetibilidade do seed
|
161 |
torch.manual_seed(seed)
|
162 |
random.seed(seed)
|
163 |
|
164 |
+
# Encode do texto
|
165 |
cliptextencode = CLIPTextEncode()
|
166 |
encoded_text = cliptextencode.encode(
|
167 |
text=prompt,
|
168 |
clip=get_value_at_index(clip_model, 0)
|
169 |
)
|
170 |
|
171 |
+
# Carregar imagem de entrada
|
172 |
loadimage = LoadImage()
|
173 |
loaded_image = loadimage.load_image(image=input_image_path)
|
174 |
|
175 |
+
# Guidance
|
176 |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
177 |
flux_guided = fluxguidance.append(
|
178 |
guidance=guidance,
|
179 |
conditioning=get_value_at_index(encoded_text, 0)
|
180 |
)
|
181 |
|
182 |
+
# Aplicar estilo
|
183 |
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
|
184 |
+
styled_image = reduxadvanced.apply_stylemodel(
|
185 |
downsampling_factor=downsampling_factor,
|
186 |
downsampling_function="area",
|
187 |
mode="keep aspect ratio",
|
|
|
192 |
image=get_value_at_index(loaded_image, 0)
|
193 |
)
|
194 |
|
195 |
+
# Gerar imagem final (decodificar do VAE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
vaedecode = VAEDecode()
|
197 |
+
decoded_image = vaedecode.decode(
|
198 |
+
samples=get_value_at_index(styled_image, 0),
|
199 |
vae=get_value_at_index(vae_model, 0)
|
200 |
)
|
201 |
|
202 |
+
# Salvar a imagem
|
203 |
output_dir = "output"
|
204 |
os.makedirs(output_dir, exist_ok=True)
|
205 |
+
output_path = os.path.join(output_dir, f"generated_{random.randint(1, 99999)}.png")
|
206 |
+
|
207 |
+
Image.fromarray((decoded_image[0] * 255).astype("uint8")).save(output_path)
|
208 |
+
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
except Exception as e:
|
210 |
+
print("Erro ao gerar imagem:", e)
|
211 |
return None
|
212 |
|
213 |
#####################################
|
214 |
+
# 7. Interface Gradio
|
215 |
#####################################
|
216 |
|
217 |
with gr.Blocks() as app:
|
218 |
+
gr.Markdown("# FLUX Redux Image Generator")
|
|
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Escreva seu prompt...", lines=3)
|
222 |
+
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
|
223 |
+
guidance_slider = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Guidance")
|
224 |
+
downsampling_factor_slider = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Downsampling Factor")
|
225 |
+
weight_slider = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Estilo")
|
226 |
+
seed_input = gr.Number(label="Seed", value=random.randint(1, 2**32), precision=0)
|
227 |
+
width_input = gr.Number(label="Largura", value=512, precision=0)
|
228 |
+
height_input = gr.Number(label="Altura", value=512, precision=0)
|
229 |
+
steps_input = gr.Number(label="Passos", value=50, precision=0)
|
230 |
+
generate_btn = gr.Button("Gerar Imagem")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
with gr.Column():
|
233 |
+
output_image = gr.Image(label="Imagem Gerada")
|
234 |
|
235 |
generate_btn.click(
|
236 |
fn=generate_image,
|
237 |
inputs=[
|
238 |
+
prompt_input, input_image, guidance_slider,
|
239 |
+
downsampling_factor_slider, weight_slider,
|
240 |
+
seed_input, width_input, height_input, steps_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
],
|
242 |
outputs=[output_image]
|
243 |
)
|
244 |
|
245 |
if __name__ == "__main__":
|
|
|
246 |
app.launch()
|