Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import torch | |
from pathlib import Path | |
from PIL import Image | |
import gradio as gr | |
from nodes import NODE_CLASS_MAPPINGS | |
import folder_paths | |
# Configure base and output directories | |
BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
output_dir = os.path.join(BASE_DIR, "output") | |
os.makedirs(output_dir, exist_ok=True) | |
folder_paths.set_output_directory(output_dir) | |
def import_custom_nodes(): | |
"""Loads custom nodes required for the workflow.""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
init_extra_nodes() | |
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps): | |
""" | |
Main function to execute the workflow and generate an image. | |
""" | |
import_custom_nodes() | |
try: | |
with torch.inference_mode(): | |
# Load CLIP | |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
dualcliploader_loaded = dualcliploader.load_clip( | |
clip_name1="t5xxl_fp16.safetensors", | |
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", | |
type="flux", | |
device="default" | |
) | |
# Text Encoding | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
encoded_text = cliptextencode.encode( | |
text=prompt, | |
clip=dualcliploader_loaded[0] | |
) | |
# Load Style Model | |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
style_model = stylemodelloader.load_style_model( | |
style_model_name="flux1-redux-dev.safetensors" | |
) | |
# Load CLIP Vision | |
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() | |
clip_vision = clipvisionloader.load_clip( | |
clip_name="sigclip_vision_patch14_384.safetensors" | |
) | |
# Load Input Image | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
loaded_image = loadimage.load_image(image=input_image) | |
# Load VAE | |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
vae = vaeloader.load_vae(vae_name="ae.safetensors") | |
# Load UNET | |
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() | |
unet = unetloader.load_unet( | |
unet_name="flux1-dev.sft", | |
weight_dtype="fp8_e4m3fn" | |
) | |
# Load LoRA | |
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
lora_model = loraloadermodelonly.load_lora_model_only( | |
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors", | |
strength_model=lora_weight, | |
model=unet[0] | |
) | |
# Flux Guidance | |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
flux_guidance = fluxguidance.append( | |
guidance=guidance, | |
conditioning=encoded_text[0] | |
) | |
# Redux Advanced | |
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() | |
redux_result = reduxadvanced.apply_stylemodel( | |
downsampling_factor=downsampling_factor, | |
downsampling_function="area", | |
mode="keep aspect ratio", | |
weight=weight, | |
autocrop_margin=0.1, | |
conditioning=flux_guidance[0], | |
style_model=style_model[0], | |
clip_vision=clip_vision[0], | |
image=loaded_image[0] | |
) | |
# Empty Latent Image | |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
empty_latent = emptylatentimage.generate( | |
width=width, | |
height=height, | |
batch_size=batch_size | |
) | |
# KSampler | |
ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
sampled = ksampler.sample( | |
seed=seed, | |
steps=steps, | |
cfg=1, | |
sampler_name="euler", | |
scheduler="simple", | |
denoise=1, | |
model=lora_model[0], | |
positive=redux_result[0], | |
negative=flux_guidance[0], | |
latent_image=empty_latent[0] | |
) | |
# VAE Decode | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
decoded = vaedecode.decode( | |
samples=sampled[0], | |
vae=vae[0] | |
) | |
# Save the image in the output directory | |
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
temp_filename = f"Flux_{random.randint(0, 99999)}" | |
saveimage.save_images( | |
filename_prefix=temp_filename, | |
images=decoded[0] | |
) | |
# Add a delay to ensure the file system updates | |
import time | |
time.sleep(0.5) | |
# Dynamically retrieve the correct file name | |
saved_files = [f for f in os.listdir(output_dir) if f.startswith(temp_filename)] | |
if not saved_files: | |
raise FileNotFoundError(f"Output file not found: Expected files starting with {temp_filename}") | |
# Get the full path of the saved file | |
temp_path = os.path.join(output_dir, saved_files[0]) | |
print(f"Image saved at: {temp_path}") | |
# Return the saved image for Gradio display | |
output_image = Image.open(temp_path) | |
return output_image | |
except Exception as e: | |
print(f"Error during generation: {str(e)}") | |
return None | |
# Gradio Interface | |
with gr.Blocks() as app: | |
gr.Markdown("# FLUX Redux Image Generator") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt here...", | |
lines=5 | |
) | |
input_image = gr.Image( | |
label="Input Image", | |
type="filepath" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
lora_weight = gr.Slider( | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=0.6, | |
label="LoRA Weight" | |
) | |
guidance = gr.Slider( | |
minimum=0, | |
maximum=20, | |
step=0.1, | |
value=3.5, | |
label="Guidance" | |
) | |
downsampling_factor = gr.Slider( | |
minimum=1, | |
maximum=8, | |
step=1, | |
value=3, | |
label="Downsampling Factor" | |
) | |
weight = gr.Slider( | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=1.0, | |
label="Model Weight" | |
) | |
with gr.Column(): | |
seed = gr.Number( | |
value=random.randint(1, 2**64), | |
label="Seed", | |
precision=0 | |
) | |
width = gr.Number( | |
value=1024, | |
label="Width", | |
precision=0 | |
) | |
height = gr.Number( | |
value=1024, | |
label="Height", | |
precision=0 | |
) | |
batch_size = gr.Number( | |
value=1, | |
label="Batch Size", | |
precision=0 | |
) | |
steps = gr.Number( | |
value=20, | |
label="Steps", | |
precision=0 | |
) | |
generate_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image", type="pil") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[ | |
prompt_input, | |
input_image, | |
lora_weight, | |
guidance, | |
downsampling_factor, | |
weight, | |
seed, | |
width, | |
height, | |
batch_size, | |
steps | |
], | |
outputs=[output_image] | |
) | |
if __name__ == "__main__": | |
app.launch() | |
#python app.py |