Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import random | |
| import torch | |
| from pathlib import Path | |
| from PIL import Image | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| import spaces | |
| from typing import Union, Sequence, Mapping, Any | |
| import logging | |
| # Configurar logging para debug | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # 1. Configuração de Caminhos e Imports | |
| current_dir = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append(current_dir) | |
| # 2. Imports do ComfyUI | |
| import folder_paths | |
| from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes | |
| from comfy import model_management | |
| # 3. Configuração de Diretórios | |
| BASE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
| output_dir = os.path.join(BASE_DIR, "output") | |
| models_dir = os.path.join(BASE_DIR, "models") | |
| os.makedirs(output_dir, exist_ok=True) | |
| os.makedirs(models_dir, exist_ok=True) | |
| folder_paths.set_output_directory(output_dir) | |
| # Configurar caminhos dos modelos e verificar estrutura | |
| MODEL_FOLDERS = ["style_models", "text_encoders", "vae", "unet", "clip_vision"] | |
| for model_folder in MODEL_FOLDERS: | |
| folder_path = os.path.join(models_dir, model_folder) | |
| os.makedirs(folder_path, exist_ok=True) | |
| folder_paths.add_model_folder_path(model_folder, folder_path) | |
| logger.info(f"Pasta de modelo configurada: {model_folder}") | |
| # 4. Diagnóstico CUDA | |
| logger.info(f"Python version: {sys.version}") | |
| logger.info(f"Torch version: {torch.__version__}") | |
| logger.info(f"CUDA disponível: {torch.cuda.is_available()}") | |
| logger.info(f"Quantidade de GPUs: {torch.cuda.device_count()}") | |
| if torch.cuda.is_available(): | |
| logger.info(f"GPU atual: {torch.cuda.get_device_name(0)}") | |
| # 5. Inicialização do ComfyUI | |
| logger.info("Inicializando ComfyUI...") | |
| try: | |
| init_extra_nodes() | |
| except Exception as e: | |
| logger.warning(f"Aviso na inicialização de nós extras: {str(e)}") | |
| logger.info("Continuando mesmo com avisos nos nós extras...") | |
| # 6. Helper Functions | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def verify_file_exists(folder: str, filename: str) -> bool: | |
| file_path = os.path.join(models_dir, folder, filename) | |
| exists = os.path.exists(file_path) | |
| if not exists: | |
| logger.error(f"Arquivo não encontrado: {file_path}") | |
| return exists | |
| # 7. Download de Modelos | |
| logger.info("Baixando modelos necessários...") | |
| try: | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
| filename="flux1-redux-dev.safetensors", | |
| local_dir=os.path.join(models_dir, "style_models") | |
| ) | |
| hf_hub_download( | |
| repo_id="comfyanonymous/flux_text_encoders", | |
| filename="t5xxl_fp16.safetensors", | |
| local_dir=os.path.join(models_dir, "text_encoders") | |
| ) | |
| hf_hub_download( | |
| repo_id="zer0int/CLIP-GmP-ViT-L-14", | |
| filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", | |
| local_dir=os.path.join(models_dir, "text_encoders") | |
| ) | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="ae.safetensors", | |
| local_dir=os.path.join(models_dir, "vae") | |
| ) | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="flux1-dev.safetensors", | |
| local_dir=os.path.join(models_dir, "unet") | |
| ) | |
| hf_hub_download( | |
| repo_id="Comfy-Org/sigclip_vision_384", | |
| filename="sigclip_vision_patch14_384.safetensors", | |
| local_dir=os.path.join(models_dir, "clip_vision") | |
| ) | |
| except Exception as e: | |
| logger.error(f"Erro ao baixar modelos: {str(e)}") | |
| raise | |
| # 8. Inicialização dos Modelos | |
| logger.info("Inicializando modelos...") | |
| try: | |
| # Use torch.no_grad() em vez de torch.inference_mode() | |
| # para evitar o erro de version counter. | |
| with torch.no_grad(): | |
| # CLIP | |
| logger.info("Carregando CLIP...") | |
| dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
| CLIP_MODEL = dualcliploader.load_clip( | |
| clip_name1="t5xxl_fp16.safetensors", | |
| clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", | |
| type="flux" | |
| ) | |
| if CLIP_MODEL is None: | |
| raise ValueError("Falha ao carregar CLIP model") | |
| # CLIP Vision | |
| logger.info("Carregando CLIP Vision...") | |
| clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]() | |
| CLIP_VISION = clipvisionloader.load_clip( | |
| clip_name="sigclip_vision_patch14_384.safetensors" | |
| ) | |
| if CLIP_VISION is None: | |
| raise ValueError("Falha ao carregar CLIP Vision model") | |
| # Style Model | |
| logger.info("Carregando Style Model...") | |
| stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]() | |
| STYLE_MODEL = stylemodelloader.load_style_model( | |
| style_model_name="flux1-redux-dev.safetensors" | |
| ) | |
| if STYLE_MODEL is None: | |
| raise ValueError("Falha ao carregar Style Model") | |
| # VAE | |
| logger.info("Carregando VAE...") | |
| vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| VAE_MODEL = vaeloader.load_vae( | |
| vae_name="ae.safetensors" | |
| ) | |
| if VAE_MODEL is None: | |
| raise ValueError("Falha ao carregar VAE model") | |
| # UNET | |
| logger.info("Carregando UNET...") | |
| unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() | |
| UNET_MODEL = unetloader.load_unet( | |
| unet_name="flux1-dev.safetensors", | |
| weight_dtype="fp8_e4m3fn" # Ajuste a seu hardware, se necessário | |
| ) | |
| if UNET_MODEL is None: | |
| raise ValueError("Falha ao carregar UNET model") | |
| logger.info("Carregando modelos na GPU...") | |
| model_loaders = [CLIP_MODEL, VAE_MODEL, CLIP_VISION, UNET_MODEL] | |
| model_management.load_models_gpu([ | |
| loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] | |
| for loader in model_loaders | |
| ]) | |
| logger.info("Modelos carregados com sucesso") | |
| except Exception as e: | |
| logger.error(f"Erro ao inicializar modelos: {str(e)}") | |
| raise | |
| # 9. Função de Geração | |
| def generate_image( | |
| prompt, input_image, lora_weight, guidance, downsampling_factor, | |
| weight, seed, width, height, batch_size, steps, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| try: | |
| # Aqui também: no_grad() para evitar cálculo de gradientes | |
| with torch.no_grad(): | |
| logger.info(f"Iniciando geração com prompt: {prompt}") | |
| # Codificar texto | |
| cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| encoded_text = cliptextencode.encode( | |
| text=prompt, | |
| clip=CLIP_MODEL[0] | |
| ) | |
| # Carregar e processar imagem | |
| loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
| loaded_image = loadimage.load_image(image=input_image) | |
| if loaded_image is None: | |
| raise ValueError("Erro ao carregar a imagem de entrada") | |
| logger.info("Imagem carregada com sucesso") | |
| # Flux Guidance | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| flux_guidance = fluxguidance.append( | |
| guidance=guidance, | |
| conditioning=encoded_text[0] | |
| ) | |
| # Redux Advanced | |
| reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() | |
| redux_result = reduxadvanced.apply_stylemodel( | |
| downsampling_factor=downsampling_factor, | |
| downsampling_function="area", | |
| mode="keep aspect ratio", | |
| weight=weight, | |
| conditioning=flux_guidance[0], | |
| style_model=STYLE_MODEL[0], | |
| clip_vision=CLIP_VISION[0], | |
| image=loaded_image[0] | |
| ) | |
| # Criar latente vazio | |
| emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
| empty_latent = emptylatentimage.generate( | |
| width=width, | |
| height=height, | |
| batch_size=batch_size | |
| ) | |
| # KSampler | |
| logger.info("Iniciando sampling...") | |
| ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
| sampled = ksampler.sample( | |
| seed=seed, | |
| steps=steps, | |
| cfg=1, | |
| sampler_name="euler", | |
| scheduler="simple", | |
| denoise=1, | |
| model=UNET_MODEL[0], | |
| positive=redux_result[0], | |
| negative=flux_guidance[0], | |
| latent_image=empty_latent[0] | |
| ) | |
| # VAE Decode | |
| logger.info("Decodificando imagem...") | |
| vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
| decoded = vaedecode.decode( | |
| samples=sampled[0], | |
| vae=VAE_MODEL[0] | |
| ) | |
| # Salvar imagem | |
| temp_filename = f"Flux_{random.randint(0, 99999)}.png" | |
| temp_path = os.path.join(output_dir, temp_filename) | |
| try: | |
| Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path) | |
| logger.info(f"Imagem salva em: {temp_path}") | |
| return temp_path | |
| except Exception as e: | |
| logger.error(f"Erro ao salvar imagem: {str(e)}") | |
| return None | |
| except Exception as e: | |
| logger.error(f"Erro ao gerar imagem: {str(e)}") | |
| return None | |
| # 10. Interface Gradio | |
| with gr.Blocks() as app: | |
| gr.Markdown("# FLUX Redux Image Generator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here...", | |
| lines=5 | |
| ) | |
| input_image = gr.Image( | |
| label="Input Image", | |
| type="filepath" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| lora_weight = gr.Slider( | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=0.6, | |
| label="LoRA Weight" | |
| ) | |
| guidance = gr.Slider( | |
| minimum=0, | |
| maximum=20, | |
| step=0.1, | |
| value=3.5, | |
| label="Guidance" | |
| ) | |
| downsampling_factor = gr.Slider( | |
| minimum=1, | |
| maximum=8, | |
| step=1, | |
| value=3, | |
| label="Downsampling Factor" | |
| ) | |
| weight = gr.Slider( | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=1.0, | |
| label="Model Weight" | |
| ) | |
| with gr.Column(): | |
| seed = gr.Number( | |
| value=random.randint(1, 2**64), | |
| label="Seed", | |
| precision=0 | |
| ) | |
| width = gr.Number( | |
| value=1024, | |
| label="Width", | |
| precision=0 | |
| ) | |
| height = gr.Number( | |
| value=1024, | |
| label="Height", | |
| precision=0 | |
| ) | |
| batch_size = gr.Number( | |
| value=1, | |
| label="Batch Size", | |
| precision=0 | |
| ) | |
| steps = gr.Number( | |
| value=20, | |
| label="Steps", | |
| precision=0 | |
| ) | |
| generate_btn = gr.Button("Generate Image") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image", type="filepath") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[ | |
| prompt_input, | |
| input_image, | |
| lora_weight, | |
| guidance, | |
| downsampling_factor, | |
| weight, | |
| seed, | |
| width, | |
| height, | |
| batch_size, | |
| steps | |
| ], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| # Ajuste caso queira compartilhar publicamente, exemplo: app.launch(server_name="0.0.0.0", share=True) | |
| app.launch() | |