Redux / app.py
nftnik's picture
Update app.py
ed9bd08 verified
raw
history blame
10.6 kB
import os
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from huggingface_hub import hf_hub_download
import sys
# 1. Configuração de Caminhos
current_dir = os.path.dirname(os.path.abspath(__file__))
comfyui_path = os.path.join(current_dir, "ComfyUI")
sys.path.append(comfyui_path)
# 2. Imports do ComfyUI
from nodes import NODE_CLASS_MAPPINGS
import folder_paths
# 3. Configuração de Diretórios
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
os.makedirs(output_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
# 4. Diagnóstico CUDA
print("Python version:", sys.version)
print("Torch version:", torch.__version__)
print("CUDA disponível:", torch.cuda.is_available())
print("Quantidade de GPUs:", torch.cuda.device_count())
if torch.cuda.is_available():
print("GPU atual:", torch.cuda.get_device_name(0))
else:
print("GPU não disponível. Usando CPU.")
# 5. Download de Modelos
def download_models():
models = [
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors", "text_encoders"),
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
("black-forest-labs/FLUX.1-dev", "flux1-dev.sft", "diffusion_models"),
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision"),
("black-forest-labs/FLUX.1-Redux-dev", "NFTNIK_FLUX.1[dev]_LoRA.safetensors", "lora")
]
for repo_id, filename, model_type in models:
model_dir = os.path.join(BASE_DIR, "models", model_type)
os.makedirs(model_dir, exist_ok=True)
print(f"Baixando {filename} de {repo_id}...")
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir)
folder_paths.add_model_folder_path(model_type, model_dir)
# 6. Load custom nodes
def import_custom_nodes():
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# 7. Main function to execute the workflow and generate an image
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
import_custom_nodes()
try:
with torch.inference_mode():
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load CLIP
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_loaded = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
type="flux",
device=device
)
# Text Encoding
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=dualcliploader_loaded[0]
)
# Load Style Model
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
style_model = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
# Load CLIP Vision
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
clip_vision = clipvisionloader.load_clip(
clip_name="model.safetensors"
)
# Load Input Image
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
# Load VAE
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vae = vaeloader.load_vae(vae_name="ae.safetensors")
# Load UNET
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unet = unetloader.load_unet(
unet_name="flux1-dev.sft",
weight_dtype="fp8_e4m3fn"
)
# Load LoRA
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
lora_model = loraloadermodelonly.load_lora_model_only(
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
strength_model=lora_weight,
model=unet[0]
)
# Flux Guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
flux_guidance = fluxguidance.append(
guidance=guidance,
conditioning=encoded_text[0]
)
# Redux Advanced
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
redux_result = reduxadvanced.apply_stylemodel(
downsampling_factor=downsampling_factor,
downsampling_function="area",
mode="keep aspect ratio",
weight=weight,
autocrop_margin=0.1,
conditioning=flux_guidance[0],
style_model=style_model[0],
clip_vision=clip_vision[0],
image=loaded_image[0]
)
# Empty Latent Image
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
empty_latent = emptylatentimage.generate(
width=width,
height=height,
batch_size=batch_size
)
# KSampler
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
sampled = ksampler.sample(
seed=seed,
steps=steps,
cfg=1,
sampler_name="euler",
scheduler="simple",
denoise=1,
model=lora_model[0],
positive=redux_result[0],
negative=flux_guidance[0],
latent_image=empty_latent[0]
)
# VAE Decode
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=sampled[0],
vae=vae[0]
)
# Save the image in the output directory
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
temp_filename = f"Flux_{random.randint(0, 99999)}"
saveimage.save_images(
filename_prefix=temp_filename,
images=decoded[0]
)
# Add a delay to ensure the file system updates
import time
time.sleep(0.5)
# Dynamically retrieve the correct file name
saved_files = [f for f in os.listdir(output_dir) if f.startswith(temp_filename)]
if not saved_files:
raise FileNotFoundError(f"Output file not found: Expected files starting with {temp_filename}")
# Get the full path of the saved file
temp_path = os.path.join(output_dir, saved_files[0])
print(f"Image saved at: {temp_path}")
# Return the saved image for Gradio display
output_image = Image.open(temp_path)
return output_image
except Exception as e:
print(f"Error during generation: {str(e)}")
return None
# 8. Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# FLUX Redux Image Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=5
)
input_image = gr.Image(
label="Input Image",
type="filepath"
)
with gr.Row():
with gr.Column():
lora_weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=0.6,
label="LoRA Weight"
)
guidance = gr.Slider(
minimum=0,
maximum=20,
step=0.1,
value=3.5,
label="Guidance"
)
downsampling_factor = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=3,
label="Downsampling Factor"
)
weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=1.0,
label="Model Weight"
)
with gr.Column():
seed = gr.Number(
value=random.randint(1, 2**64),
label="Seed",
precision=0
)
width = gr.Number(
value=1024,
label="Width",
precision=0
)
height = gr.Number(
value=1024,
label="Height",
precision=0
)
batch_size = gr.Number(
value=1,
label="Batch Size",
precision=0
)
steps = gr.Number(
value=20,
label="Steps",
precision=0
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input,
input_image,
lora_weight,
guidance,
downsampling_factor,
weight,
seed,
width,
height,
batch_size,
steps
],
outputs=[output_image]
)
if __name__ == "__main__":
# Download_models()
app.launch(share=True)