File size: 31,656 Bytes
067283f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Optional
import logging

import numpy as np
import torch
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from torch import nn

from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from comfy.ldm.modules.attention import optimized_attention


def apply_rotary_pos_emb(

    t: torch.Tensor,

    freqs: torch.Tensor,

) -> torch.Tensor:
    t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
    t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
    t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
    return t_out


def get_normalization(name: str, channels: int, weight_args={}):
    if name == "I":
        return nn.Identity()
    elif name == "R":
        return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
    else:
        raise ValueError(f"Normalization {name} not found")


class BaseAttentionOp(nn.Module):
    def __init__(self):
        super().__init__()


class Attention(nn.Module):
    """

    Generalized attention impl.



    Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided.

    If `context_dim` is None, self-attention is assumed.



    Parameters:

        query_dim (int): Dimension of each query vector.

        context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed.

        heads (int, optional): Number of attention heads. Defaults to 8.

        dim_head (int, optional): Dimension of each head. Defaults to 64.

        dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0.

        attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default.

        qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False.

        out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False.

        qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections.

                                  Defaults to "SSI".

        qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections.

                                        Defaults to 'per_head'. Only support 'per_head'.



    Examples:

        >>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1)

        >>> query = torch.randn(10, 128)  # Batch size of 10

        >>> context = torch.randn(10, 256)  # Batch size of 10

        >>> output = attn(query, context)  # Perform the attention operation



    Note:

        https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223

    """

    def __init__(

        self,

        query_dim: int,

        context_dim=None,

        heads=8,

        dim_head=64,

        dropout=0.0,

        attn_op: Optional[BaseAttentionOp] = None,

        qkv_bias: bool = False,

        out_bias: bool = False,

        qkv_norm: str = "SSI",

        qkv_norm_mode: str = "per_head",

        backend: str = "transformer_engine",

        qkv_format: str = "bshd",

        weight_args={},

        operations=None,

    ) -> None:
        super().__init__()

        self.is_selfattn = context_dim is None  # self attention

        inner_dim = dim_head * heads
        context_dim = query_dim if context_dim is None else context_dim

        self.heads = heads
        self.dim_head = dim_head
        self.qkv_norm_mode = qkv_norm_mode
        self.qkv_format = qkv_format

        if self.qkv_norm_mode == "per_head":
            norm_dim = dim_head
        else:
            raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")

        self.backend = backend

        self.to_q = nn.Sequential(
            operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
            get_normalization(qkv_norm[0], norm_dim),
        )
        self.to_k = nn.Sequential(
            operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
            get_normalization(qkv_norm[1], norm_dim),
        )
        self.to_v = nn.Sequential(
            operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
            get_normalization(qkv_norm[2], norm_dim),
        )

        self.to_out = nn.Sequential(
            operations.Linear(inner_dim, query_dim, bias=out_bias, **weight_args),
            nn.Dropout(dropout),
        )

    def cal_qkv(

        self, x, context=None, mask=None, rope_emb=None, **kwargs

    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        del kwargs


        """

        self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers.

        Before 07/24/2024, these modules normalize across all heads.

        After 07/24/2024, to support tensor parallelism and follow the common practice in the community,

        we support to normalize per head.

        To keep the checkpoint copatibility with the previous code,

        we keep the nn.Sequential but call the projection and the normalization layers separately.

        We use a flag `self.qkv_norm_mode` to control the normalization behavior.

        The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head.

        """
        if self.qkv_norm_mode == "per_head":
            q = self.to_q[0](x)
            context = x if context is None else context
            k = self.to_k[0](context)
            v = self.to_v[0](context)
            q, k, v = map(
                lambda t: rearrange(t, "s b (n c) -> b n s c", n=self.heads, c=self.dim_head),
                (q, k, v),
            )
        else:
            raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")

        q = self.to_q[1](q)
        k = self.to_k[1](k)
        v = self.to_v[1](v)
        if self.is_selfattn and rope_emb is not None:  # only apply to self-attention!
            # apply_rotary_pos_emb inlined
            q_shape = q.shape
            q = q.reshape(*q.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2)
            q = rope_emb[..., 0] * q[..., 0] + rope_emb[..., 1] * q[..., 1]
            q = q.movedim(-1, -2).reshape(*q_shape).to(x.dtype)

            # apply_rotary_pos_emb inlined
            k_shape = k.shape
            k = k.reshape(*k.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2)
            k = rope_emb[..., 0] * k[..., 0] + rope_emb[..., 1] * k[..., 1]
            k = k.movedim(-1, -2).reshape(*k_shape).to(x.dtype)
        return q, k, v

    def forward(

        self,

        x,

        context=None,

        mask=None,

        rope_emb=None,

        **kwargs,

    ):
        """

        Args:

            x (Tensor): The query tensor of shape [B, Mq, K]

            context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None

        """
        q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
        out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
        del q, k, v
        out = rearrange(out, " b n s c -> s b (n c)")
        return self.to_out(out)


class FeedForward(nn.Module):
    """

    Transformer FFN with optional gating



    Parameters:

        d_model (int): Dimensionality of input features.

        d_ff (int): Dimensionality of the hidden layer.

        dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1.

        activation (callable, optional): The activation function applied after the first linear layer.

                                         Defaults to nn.ReLU().

        is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer.

                                   Defaults to False.

        bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True.



    Example:

        >>> ff = FeedForward(d_model=512, d_ff=2048)

        >>> x = torch.randn(64, 10, 512)  # Example input tensor

        >>> output = ff(x)

        >>> print(output.shape)  # Expected shape: (64, 10, 512)

    """

    def __init__(

        self,

        d_model: int,

        d_ff: int,

        dropout: float = 0.1,

        activation=nn.ReLU(),

        is_gated: bool = False,

        bias: bool = False,

        weight_args={},

        operations=None,

    ) -> None:
        super().__init__()

        self.layer1 = operations.Linear(d_model, d_ff, bias=bias, **weight_args)
        self.layer2 = operations.Linear(d_ff, d_model, bias=bias, **weight_args)

        self.dropout = nn.Dropout(dropout)
        self.activation = activation
        self.is_gated = is_gated
        if is_gated:
            self.linear_gate = operations.Linear(d_model, d_ff, bias=False, **weight_args)

    def forward(self, x: torch.Tensor):
        g = self.activation(self.layer1(x))
        if self.is_gated:
            x = g * self.linear_gate(x)
        else:
            x = g
        assert self.dropout.p == 0.0, "we skip dropout"
        return self.layer2(x)


class GPT2FeedForward(FeedForward):
    def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False, weight_args={}, operations=None):
        super().__init__(
            d_model=d_model,
            d_ff=d_ff,
            dropout=dropout,
            activation=nn.GELU(),
            is_gated=False,
            bias=bias,
            weight_args=weight_args,
            operations=operations,
        )

    def forward(self, x: torch.Tensor):
        assert self.dropout.p == 0.0, "we skip dropout"

        x = self.layer1(x)
        x = self.activation(x)
        x = self.layer2(x)

        return x


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


class Timesteps(nn.Module):
    def __init__(self, num_channels):
        super().__init__()
        self.num_channels = num_channels

    def forward(self, timesteps):
        half_dim = self.num_channels // 2
        exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
        exponent = exponent / (half_dim - 0.0)

        emb = torch.exp(exponent)
        emb = timesteps[:, None].float() * emb[None, :]

        sin_emb = torch.sin(emb)
        cos_emb = torch.cos(emb)
        emb = torch.cat([cos_emb, sin_emb], dim=-1)

        return emb


class TimestepEmbedding(nn.Module):
    def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, weight_args={}, operations=None):
        super().__init__()
        logging.debug(
            f"Using AdaLN LoRA Flag:  {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
        )
        self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, **weight_args)
        self.activation = nn.SiLU()
        self.use_adaln_lora = use_adaln_lora
        if use_adaln_lora:
            self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, **weight_args)
        else:
            self.linear_2 = operations.Linear(out_features, out_features, bias=True, **weight_args)

    def forward(self, sample: torch.Tensor) -> torch.Tensor:
        emb = self.linear_1(sample)
        emb = self.activation(emb)
        emb = self.linear_2(emb)

        if self.use_adaln_lora:
            adaln_lora_B_3D = emb
            emb_B_D = sample
        else:
            emb_B_D = emb
            adaln_lora_B_3D = None

        return emb_B_D, adaln_lora_B_3D


class FourierFeatures(nn.Module):
    """

    Implements a layer that generates Fourier features from input tensors, based on randomly sampled

    frequencies and phases. This can help in learning high-frequency functions in low-dimensional problems.



    [B] -> [B, D]



    Parameters:

        num_channels (int): The number of Fourier features to generate.

        bandwidth (float, optional): The scaling factor for the frequency of the Fourier features. Defaults to 1.

        normalize (bool, optional): If set to True, the outputs are scaled by sqrt(2), usually to normalize

                                    the variance of the features. Defaults to False.



    Example:

        >>> layer = FourierFeatures(num_channels=256, bandwidth=0.5, normalize=True)

        >>> x = torch.randn(10, 256)  # Example input tensor

        >>> output = layer(x)

        >>> print(output.shape)  # Expected shape: (10, 256)

    """

    def __init__(self, num_channels, bandwidth=1, normalize=False):
        super().__init__()
        self.register_buffer("freqs", 2 * np.pi * bandwidth * torch.randn(num_channels), persistent=True)
        self.register_buffer("phases", 2 * np.pi * torch.rand(num_channels), persistent=True)
        self.gain = np.sqrt(2) if normalize else 1

    def forward(self, x, gain: float = 1.0):
        """

        Apply the Fourier feature transformation to the input tensor.



        Args:

            x (torch.Tensor): The input tensor.

            gain (float, optional): An additional gain factor applied during the forward pass. Defaults to 1.



        Returns:

            torch.Tensor: The transformed tensor, with Fourier features applied.

        """
        in_dtype = x.dtype
        x = x.to(torch.float32).ger(self.freqs.to(torch.float32)).add(self.phases.to(torch.float32))
        x = x.cos().mul(self.gain * gain).to(in_dtype)
        return x


class PatchEmbed(nn.Module):
    """

    PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,

    depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,

    making it suitable for video and image processing tasks. It supports dividing the input into patches

    and embedding each patch into a vector of size `out_channels`.



    Parameters:

    - spatial_patch_size (int): The size of each spatial patch.

    - temporal_patch_size (int): The size of each temporal patch.

    - in_channels (int): Number of input channels. Default: 3.

    - out_channels (int): The dimension of the embedding vector for each patch. Default: 768.

    - bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.

    """

    def __init__(

        self,

        spatial_patch_size,

        temporal_patch_size,

        in_channels=3,

        out_channels=768,

        bias=True,

        weight_args={},

        operations=None,

    ):
        super().__init__()
        self.spatial_patch_size = spatial_patch_size
        self.temporal_patch_size = temporal_patch_size

        self.proj = nn.Sequential(
            Rearrange(
                "b c (t r) (h m) (w n) -> b t h w (c r m n)",
                r=temporal_patch_size,
                m=spatial_patch_size,
                n=spatial_patch_size,
            ),
            operations.Linear(
                in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias, **weight_args
            ),
        )
        self.out = nn.Identity()

    def forward(self, x):
        """

        Forward pass of the PatchEmbed module.



        Parameters:

        - x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where

            B is the batch size,

            C is the number of channels,

            T is the temporal dimension,

            H is the height, and

            W is the width of the input.



        Returns:

        - torch.Tensor: The embedded patches as a tensor, with shape b t h w c.

        """
        assert x.dim() == 5
        _, _, T, H, W = x.shape
        assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
        assert T % self.temporal_patch_size == 0
        x = self.proj(x)
        return self.out(x)


class FinalLayer(nn.Module):
    """

    The final layer of video DiT.

    """

    def __init__(

        self,

        hidden_size,

        spatial_patch_size,

        temporal_patch_size,

        out_channels,

        use_adaln_lora: bool = False,

        adaln_lora_dim: int = 256,

        weight_args={},

        operations=None,

    ):
        super().__init__()
        self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **weight_args)
        self.linear = operations.Linear(
            hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, **weight_args
        )
        self.hidden_size = hidden_size
        self.n_adaln_chunks = 2
        self.use_adaln_lora = use_adaln_lora
        if use_adaln_lora:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                operations.Linear(hidden_size, adaln_lora_dim, bias=False, **weight_args),
                operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, **weight_args),
            )
        else:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, **weight_args)
            )

    def forward(

        self,

        x_BT_HW_D,

        emb_B_D,

        adaln_lora_B_3D: Optional[torch.Tensor] = None,

    ):
        if self.use_adaln_lora:
            assert adaln_lora_B_3D is not None
            shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk(
                2, dim=1
            )
        else:
            shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1)

        B = emb_B_D.shape[0]
        T = x_BT_HW_D.shape[0] // B
        shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T)
        x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D)

        x_BT_HW_D = self.linear(x_BT_HW_D)
        return x_BT_HW_D


class VideoAttn(nn.Module):
    """

    Implements video attention with optional cross-attention capabilities.



    This module processes video features while maintaining their spatio-temporal structure. It can perform

    self-attention within the video features or cross-attention with external context features.



    Parameters:

        x_dim (int): Dimension of input feature vectors

        context_dim (Optional[int]): Dimension of context features for cross-attention. None for self-attention

        num_heads (int): Number of attention heads

        bias (bool): Whether to include bias in attention projections. Default: False

        qkv_norm_mode (str): Normalization mode for query/key/value projections. Must be "per_head". Default: "per_head"

        x_format (str): Format of input tensor. Must be "BTHWD". Default: "BTHWD"



    Input shape:

        - x: (T, H, W, B, D) video features

        - context (optional): (M, B, D) context features for cross-attention

        where:

            T: temporal dimension

            H: height

            W: width

            B: batch size

            D: feature dimension

            M: context sequence length

    """

    def __init__(

        self,

        x_dim: int,

        context_dim: Optional[int],

        num_heads: int,

        bias: bool = False,

        qkv_norm_mode: str = "per_head",

        x_format: str = "BTHWD",

        weight_args={},

        operations=None,

    ) -> None:
        super().__init__()
        self.x_format = x_format

        self.attn = Attention(
            x_dim,
            context_dim,
            num_heads,
            x_dim // num_heads,
            qkv_bias=bias,
            qkv_norm="RRI",
            out_bias=bias,
            qkv_norm_mode=qkv_norm_mode,
            qkv_format="sbhd",
            weight_args=weight_args,
            operations=operations,
        )

    def forward(

        self,

        x: torch.Tensor,

        context: Optional[torch.Tensor] = None,

        crossattn_mask: Optional[torch.Tensor] = None,

        rope_emb_L_1_1_D: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        """

        Forward pass for video attention.



        Args:

            x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data.

            context (Tensor): Context tensor of shape (B, M, D) or (M, B, D),

            where M is the sequence length of the context.

            crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms.

            rope_emb_L_1_1_D (Optional[Tensor]):

            Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.



        Returns:

            Tensor: The output tensor with applied attention, maintaining the input shape.

        """

        x_T_H_W_B_D = x
        context_M_B_D = context
        T, H, W, B, D = x_T_H_W_B_D.shape
        x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d")
        x_THW_B_D = self.attn(
            x_THW_B_D,
            context_M_B_D,
            crossattn_mask,
            rope_emb=rope_emb_L_1_1_D,
        )
        x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
        return x_T_H_W_B_D


def adaln_norm_state(norm_state, x, scale, shift):
    normalized = norm_state(x)
    return normalized * (1 + scale) + shift


class DITBuildingBlock(nn.Module):
    """

    A building block for the DiT (Diffusion Transformer) architecture that supports different types of

    attention and MLP operations with adaptive layer normalization.



    Parameters:

        block_type (str): Type of block - one of:

            - "cross_attn"/"ca": Cross-attention

            - "full_attn"/"fa": Full self-attention

            - "mlp"/"ff": MLP/feedforward block

        x_dim (int): Dimension of input features

        context_dim (Optional[int]): Dimension of context features for cross-attention

        num_heads (int): Number of attention heads

        mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0

        bias (bool): Whether to use bias in layers. Default: False

        mlp_dropout (float): Dropout rate for MLP. Default: 0.0

        qkv_norm_mode (str): QKV normalization mode. Default: "per_head"

        x_format (str): Input tensor format. Default: "BTHWD"

        use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False

        adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256

    """

    def __init__(

        self,

        block_type: str,

        x_dim: int,

        context_dim: Optional[int],

        num_heads: int,

        mlp_ratio: float = 4.0,

        bias: bool = False,

        mlp_dropout: float = 0.0,

        qkv_norm_mode: str = "per_head",

        x_format: str = "BTHWD",

        use_adaln_lora: bool = False,

        adaln_lora_dim: int = 256,

        weight_args={},

        operations=None

    ) -> None:
        block_type = block_type.lower()

        super().__init__()
        self.x_format = x_format
        if block_type in ["cross_attn", "ca"]:
            self.block = VideoAttn(
                x_dim,
                context_dim,
                num_heads,
                bias=bias,
                qkv_norm_mode=qkv_norm_mode,
                x_format=self.x_format,
                weight_args=weight_args,
                operations=operations,
            )
        elif block_type in ["full_attn", "fa"]:
            self.block = VideoAttn(
                x_dim, None, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations
            )
        elif block_type in ["mlp", "ff"]:
            self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias, weight_args=weight_args, operations=operations)
        else:
            raise ValueError(f"Unknown block type: {block_type}")

        self.block_type = block_type
        self.use_adaln_lora = use_adaln_lora

        self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6)
        self.n_adaln_chunks = 3
        if use_adaln_lora:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                operations.Linear(x_dim, adaln_lora_dim, bias=False, **weight_args),
                operations.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args),
            )
        else:
            self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args))

    def forward(

        self,

        x: torch.Tensor,

        emb_B_D: torch.Tensor,

        crossattn_emb: torch.Tensor,

        crossattn_mask: Optional[torch.Tensor] = None,

        rope_emb_L_1_1_D: Optional[torch.Tensor] = None,

        adaln_lora_B_3D: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        """

        Forward pass for dynamically configured blocks with adaptive normalization.



        Args:

            x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D).

            emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation.

            crossattn_emb (Tensor): Tensor for cross-attention blocks.

            crossattn_mask (Optional[Tensor]): Optional mask for cross-attention.

            rope_emb_L_1_1_D (Optional[Tensor]):

            Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.



        Returns:

            Tensor: The output tensor after processing through the configured block and adaptive normalization.

        """
        if self.use_adaln_lora:
            shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk(
                self.n_adaln_chunks, dim=1
            )
        else:
            shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1)

        shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = (
            shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
            scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
            gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
        )

        if self.block_type in ["mlp", "ff"]:
            x = x + gate_1_1_1_B_D * self.block(
                adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
            )
        elif self.block_type in ["full_attn", "fa"]:
            x = x + gate_1_1_1_B_D * self.block(
                adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
                context=None,
                rope_emb_L_1_1_D=rope_emb_L_1_1_D,
            )
        elif self.block_type in ["cross_attn", "ca"]:
            x = x + gate_1_1_1_B_D * self.block(
                adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
                context=crossattn_emb,
                crossattn_mask=crossattn_mask,
                rope_emb_L_1_1_D=rope_emb_L_1_1_D,
            )
        else:
            raise ValueError(f"Unknown block type: {self.block_type}")

        return x


class GeneralDITTransformerBlock(nn.Module):
    """

    A wrapper module that manages a sequence of DITBuildingBlocks to form a complete transformer layer.

    Each block in the sequence is specified by a block configuration string.



    Parameters:

        x_dim (int): Dimension of input features

        context_dim (int): Dimension of context features for cross-attention blocks

        num_heads (int): Number of attention heads

        block_config (str): String specifying block sequence (e.g. "ca-fa-mlp" for cross-attention,

                          full-attention, then MLP)

        mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0

        x_format (str): Input tensor format. Default: "BTHWD"

        use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False

        adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256



    The block_config string uses "-" to separate block types:

        - "ca"/"cross_attn": Cross-attention block

        - "fa"/"full_attn": Full self-attention block

        - "mlp"/"ff": MLP/feedforward block



    Example:

        block_config = "ca-fa-mlp" creates a sequence of:

        1. Cross-attention block

        2. Full self-attention block

        3. MLP block

    """

    def __init__(

        self,

        x_dim: int,

        context_dim: int,

        num_heads: int,

        block_config: str,

        mlp_ratio: float = 4.0,

        x_format: str = "BTHWD",

        use_adaln_lora: bool = False,

        adaln_lora_dim: int = 256,

        weight_args={},

        operations=None

    ):
        super().__init__()
        self.blocks = nn.ModuleList()
        self.x_format = x_format
        for block_type in block_config.split("-"):
            self.blocks.append(
                DITBuildingBlock(
                    block_type,
                    x_dim,
                    context_dim,
                    num_heads,
                    mlp_ratio,
                    x_format=self.x_format,
                    use_adaln_lora=use_adaln_lora,
                    adaln_lora_dim=adaln_lora_dim,
                    weight_args=weight_args,
                    operations=operations,
                )
            )

    def forward(

        self,

        x: torch.Tensor,

        emb_B_D: torch.Tensor,

        crossattn_emb: torch.Tensor,

        crossattn_mask: Optional[torch.Tensor] = None,

        rope_emb_L_1_1_D: Optional[torch.Tensor] = None,

        adaln_lora_B_3D: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        for block in self.blocks:
            x = block(
                x,
                emb_B_D,
                crossattn_emb,
                crossattn_mask,
                rope_emb_L_1_1_D=rope_emb_L_1_1_D,
                adaln_lora_B_3D=adaln_lora_B_3D,
            )
        return x