Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,164 Bytes
fd40ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import random
import torch
from pathlib import Path
from PIL import Image
import gradio as gr
from nodes import NODE_CLASS_MAPPINGS
import folder_paths
# Configure base and output directories
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
output_dir = os.path.join(BASE_DIR, "output")
os.makedirs(output_dir, exist_ok=True)
folder_paths.set_output_directory(output_dir)
def import_custom_nodes():
"""Loads custom nodes required for the workflow."""
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
"""
Main function to execute the workflow and generate an image.
"""
import_custom_nodes()
try:
with torch.inference_mode():
# Load CLIP
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_loaded = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
type="flux",
device="default"
)
# Text Encoding
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
encoded_text = cliptextencode.encode(
text=prompt,
clip=dualcliploader_loaded[0]
)
# Load Style Model
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
style_model = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
# Load CLIP Vision
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
clip_vision = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
# Load Input Image
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loaded_image = loadimage.load_image(image=input_image)
# Load VAE
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vae = vaeloader.load_vae(vae_name="ae.safetensors")
# Load UNET
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unet = unetloader.load_unet(
unet_name="flux1-dev.sft",
weight_dtype="fp8_e4m3fn"
)
# Load LoRA
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
lora_model = loraloadermodelonly.load_lora_model_only(
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
strength_model=lora_weight,
model=unet[0]
)
# Flux Guidance
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
flux_guidance = fluxguidance.append(
guidance=guidance,
conditioning=encoded_text[0]
)
# Redux Advanced
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
redux_result = reduxadvanced.apply_stylemodel(
downsampling_factor=downsampling_factor,
downsampling_function="area",
mode="keep aspect ratio",
weight=weight,
autocrop_margin=0.1,
conditioning=flux_guidance[0],
style_model=style_model[0],
clip_vision=clip_vision[0],
image=loaded_image[0]
)
# Empty Latent Image
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
empty_latent = emptylatentimage.generate(
width=width,
height=height,
batch_size=batch_size
)
# KSampler
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
sampled = ksampler.sample(
seed=seed,
steps=steps,
cfg=1,
sampler_name="euler",
scheduler="simple",
denoise=1,
model=lora_model[0],
positive=redux_result[0],
negative=flux_guidance[0],
latent_image=empty_latent[0]
)
# VAE Decode
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
decoded = vaedecode.decode(
samples=sampled[0],
vae=vae[0]
)
# Save the image in the output directory
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
temp_filename = f"Flux_{random.randint(0, 99999)}"
saveimage.save_images(
filename_prefix=temp_filename,
images=decoded[0]
)
# Add a delay to ensure the file system updates
import time
time.sleep(0.5)
# Dynamically retrieve the correct file name
saved_files = [f for f in os.listdir(output_dir) if f.startswith(temp_filename)]
if not saved_files:
raise FileNotFoundError(f"Output file not found: Expected files starting with {temp_filename}")
# Get the full path of the saved file
temp_path = os.path.join(output_dir, saved_files[0])
print(f"Image saved at: {temp_path}")
# Return the saved image for Gradio display
output_image = Image.open(temp_path)
return output_image
except Exception as e:
print(f"Error during generation: {str(e)}")
return None
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# FLUX Redux Image Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=5
)
input_image = gr.Image(
label="Input Image",
type="filepath"
)
with gr.Row():
with gr.Column():
lora_weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=0.6,
label="LoRA Weight"
)
guidance = gr.Slider(
minimum=0,
maximum=20,
step=0.1,
value=3.5,
label="Guidance"
)
downsampling_factor = gr.Slider(
minimum=1,
maximum=8,
step=1,
value=3,
label="Downsampling Factor"
)
weight = gr.Slider(
minimum=0,
maximum=2,
step=0.1,
value=1.0,
label="Model Weight"
)
with gr.Column():
seed = gr.Number(
value=random.randint(1, 2**64),
label="Seed",
precision=0
)
width = gr.Number(
value=1024,
label="Width",
precision=0
)
height = gr.Number(
value=1024,
label="Height",
precision=0
)
batch_size = gr.Number(
value=1,
label="Batch Size",
precision=0
)
steps = gr.Number(
value=20,
label="Steps",
precision=0
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[
prompt_input,
input_image,
lora_weight,
guidance,
downsampling_factor,
weight,
seed,
width,
height,
batch_size,
steps
],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch()
#python app.py |