Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,109 Bytes
692d024 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import numpy as np
import torch
import comfy
import folder_paths
import nodes
import os
import math
import re
import safetensors
import glob
from collections import namedtuple
@torch.no_grad()
def automerge(tensor, threshold):
(batchsize, slices, dim) = tensor.shape
newTensor=[]
for batch in range(batchsize):
tokens = []
lastEmbed = tensor[batch,0,:]
merge=[lastEmbed]
tokens.append(lastEmbed)
for i in range(1,slices):
tok = tensor[batch,i,:]
cosine = torch.dot(tok,lastEmbed)/torch.sqrt(torch.dot(tok,tok)*torch.dot(lastEmbed,lastEmbed))
if cosine >= threshold:
merge.append(tok)
lastEmbed = torch.stack(merge).mean(dim=0)
else:
tokens.append(lastEmbed)
merge=[]
lastEmbed=tok
newTensor.append(torch.stack(tokens))
return torch.stack(newTensor)
STRENGTHS = ["highest", "high", "medium", "low", "lowest"]
STRENGTHS_VALUES = [1,2, 3,4,5]
class StyleModelApplySimple:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"image_strength": (STRENGTHS, {"default": "medium"})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
CATEGORY = "conditioning/style_model"
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, image_strength):
stren = STRENGTHS.index(image_strength)
downsampling_factor = STRENGTHS_VALUES[stren]
mode="area" if downsampling_factor==3 else "bicubic"
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
if downsampling_factor>1:
(b,t,h)=cond.shape
m = int(np.sqrt(t))
cond=torch.nn.functional.interpolate(cond.view(b, m, m, h).transpose(1,-1), size=(m//downsampling_factor, m//downsampling_factor), mode=mode)#
cond=cond.transpose(1,-1).reshape(b,-1,h)
c = []
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
c.append(n)
return (c, )
def standardizeMask(mask):
if mask is None:
return None
if len(mask.shape) == 2:
(h,w)=mask.shape
mask=mask.view(1,1,h,w)
elif len(mask.shape)==3:
(b,h,w)=mask.shape
mask=mask.view(b,1,h,w)
return mask
def crop(img, mask, box, desiredSize):
(ox,oy,w,h) = box
if mask is not None:
mask=torch.nn.functional.interpolate(mask, size=(h,w), mode="bicubic").view(-1,h,w,1)
img = torch.nn.functional.interpolate(img.transpose(-1,1), size=(w,h), mode="bicubic", antialias=True)
return (img[:, :, ox:(desiredSize+ox), oy:(desiredSize+oy)].transpose(1,-1), None if mask == None else mask[:, oy:(desiredSize+oy), ox:(desiredSize+ox),:])
def letterbox(img, mask, w, h, desiredSize):
(b,oh,ow,c) = img.shape
img = torch.nn.functional.interpolate(img.transpose(-1,1), size=(w,h), mode="bicubic", antialias=True).transpose(1,-1)
letterbox = torch.zeros(size=(b,desiredSize,desiredSize, c))
offsetx = (desiredSize-w)//2
offsety = (desiredSize-h)//2
letterbox[:, offsety:(offsety+h), offsetx:(offsetx+w), :] += img
img = letterbox
if mask is not None:
mask=torch.nn.functional.interpolate(mask, size=(h,w), mode="bicubic")
letterbox = torch.zeros(size=(b,1,desiredSize,desiredSize))
letterbox[:, :, offsety:(offsety+h), offsetx:(offsetx+w)] += mask
mask = letterbox.view(b,1,desiredSize,desiredSize)
return (img, mask)
def getBoundingBox(mask, w, h, relativeMargin, desiredSize):
mask=mask.view(h,w)
marginW = math.ceil(relativeMargin * w)
marginH = math.ceil(relativeMargin * h)
indices = torch.nonzero(mask, as_tuple=False)
y_min, x_min = indices.min(dim=0).values
y_max, x_max = indices.max(dim=0).values
x_min = max(0, x_min.item() - marginW)
y_min = max(0, y_min.item() - marginH)
x_max = min(w, x_max.item() + marginW)
y_max = min(h, y_max.item() + marginH)
box_width = x_max - x_min
box_height = y_max - y_min
larger_edge = max(box_width, box_height, desiredSize)
if box_width < larger_edge:
delta = larger_edge - box_width
left_space = x_min
right_space = w - x_max
expand_left = min(delta // 2, left_space)
expand_right = min(delta - expand_left, right_space)
expand_left += min(delta - (expand_left+expand_right), left_space-expand_left)
x_min -= expand_left
x_max += expand_right
if box_height < larger_edge:
delta = larger_edge - box_height
top_space = y_min
bottom_space = h - y_max
expand_top = min(delta // 2, top_space)
expand_bottom = min(delta - expand_top, bottom_space)
expand_top += min(delta - (expand_top+expand_bottom), top_space-expand_top)
y_min -= expand_top
y_max += expand_bottom
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(w, x_max)
y_max = min(h, y_max)
return x_min, y_min, x_max, y_max
def patchifyMask(mask, patchSize=14):
if mask is None:
return mask
(b, imgSize, imgSize,_) = mask.shape
toks = imgSize//patchSize
return torch.nn.MaxPool2d(kernel_size=(patchSize,patchSize),stride=patchSize)(mask.view(b,imgSize,imgSize)).view(b,toks,toks,1)
def prepareImageAndMask(visionEncoder, image, mask, mode, autocrop_margin, desiredSize=384):
mode = IMAGE_MODES.index(mode)
(B,H,W,C) = image.shape
if mode==0: # center crop square
imgsize = min(H,W)
ratio = desiredSize/imgsize
(w,h) = (round(W*ratio), round(H*ratio))
image, mask = crop(image, standardizeMask(mask), ((w - desiredSize)//2, (h - desiredSize)//2, w, h), desiredSize)
elif mode==1:
if mask is None:
mask = torch.ones(size=(B,H,W))
imgsize = max(H,W)
ratio = desiredSize/imgsize
(w,h) = (round(W*ratio), round(H*ratio))
image, mask = letterbox(image, standardizeMask(mask), w, h, desiredSize)
elif mode==2:
(bx,by,bx2,by2) = getBoundingBox(mask,W,H,autocrop_margin, desiredSize)
image = image[:,by:by2,bx:bx2,:]
mask = mask[:,by:by2,bx:bx2]
imgsize = max(bx2-bx,by2-by)
ratio = desiredSize/imgsize
(w,h) = (round((bx2-bx)*ratio), round((by2-by)*ratio))
image, mask = letterbox(image, standardizeMask(mask), w, h, desiredSize)
return (image,mask)
def processMask(mask,imgSize=384, patchSize=14):
if len(mask.shape) == 2:
(h,w)=mask.shape
mask=mask.view(1,1,h,w)
elif len(mask.shape)==3:
(b,h,w)=mask.shape
mask=mask.view(b,1,h,w)
scalingFactor = imgSize/min(h,w)
# scale
mask=torch.nn.functional.interpolate(mask, size=(round(h*scalingFactor),round(w*scalingFactor)), mode="bicubic")
# crop
horizontalBorder = (imgSize-mask.shape[3])//2
verticalBorder = (imgSize-mask.shape[2])//2
mask=mask[:, :, verticalBorder:(verticalBorder+imgSize),horizontalBorder:(horizontalBorder+imgSize)].view(b,imgSize,imgSize)
toks = imgSize//patchSize
return torch.nn.MaxPool2d(kernel_size=(patchSize,patchSize),stride=patchSize)(mask).view(b,toks,toks,1)
IMAGE_MODES = [
"center crop (square)",
"keep aspect ratio",
"autocrop with mask"
]
class ReduxAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision": ("CLIP_VISION", ),
"image": ("IMAGE",),
"downsampling_factor": ("INT", {"default": 3, "min": 1, "max":9}),
"downsampling_function": (["nearest", "bilinear", "bicubic","area","nearest-exact"], {"default": "area"}),
"mode": (IMAGE_MODES, {"default": "center crop (square)"}),
"weight": ("FLOAT", {"default": 1.0, "min":0.0, "max":1.0, "step":0.01})
},
"optional": {
"mask": ("MASK", ),
"autocrop_margin": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING","IMAGE", "MASK")
FUNCTION = "apply_stylemodel"
CATEGORY = "conditioning/style_model"
def apply_stylemodel(self, clip_vision, image, style_model, conditioning, downsampling_factor, downsampling_function,mode,weight, mask=None, autocrop_margin=0.0):
image, masko = prepareImageAndMask(clip_vision, image, mask, mode, autocrop_margin)
clip_vision_output,mask=(clip_vision.encode_image(image), patchifyMask(masko))
mode="area"
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
(b,t,h)=cond.shape
m = int(np.sqrt(t))
if downsampling_factor>1:
cond = cond.view(b, m, m, h)
if mask is not None:
cond = cond*mask
cond=torch.nn.functional.interpolate(cond.transpose(1,-1), size=(m//downsampling_factor, m//downsampling_factor), mode=downsampling_function)
cond=cond.transpose(1,-1).reshape(b,-1,h)
mask = None if mask is None else torch.nn.functional.interpolate(mask.view(b, m, m, 1).transpose(1,-1), size=(m//downsampling_factor, m//downsampling_factor), mode=mode).transpose(-1,1)
cond = cond*(weight*weight)
c = []
if mask is not None:
mask = (mask>0).reshape(b,-1)
max_len = mask.sum(dim=1).max().item()
padded_embeddings = torch.zeros((b, max_len, h), dtype=cond.dtype, device=cond.device)
for i in range(b):
filtered = cond[i][mask[i]]
padded_embeddings[i, :filtered.size(0)] = filtered
cond = padded_embeddings
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
c.append(n)
return (c, image, masko)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"StyleModelApplySimple": StyleModelApplySimple,
"ReduxAdvanced": ReduxAdvanced
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"StyleModelApplySimple": "Apply style model (simple)",
"ReduxAdvanced": "Apply Redux model (advanced)"
} |