File size: 11,109 Bytes
692d024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import torch
import comfy
import folder_paths
import nodes
import os
import math
import re
import safetensors
import glob
from collections import namedtuple

@torch.no_grad()
def automerge(tensor, threshold):
    (batchsize, slices, dim) = tensor.shape
    newTensor=[]
    for batch in range(batchsize):
        tokens = []
        lastEmbed = tensor[batch,0,:]
        merge=[lastEmbed]
        tokens.append(lastEmbed)
        for i in range(1,slices):
            tok = tensor[batch,i,:]
            cosine = torch.dot(tok,lastEmbed)/torch.sqrt(torch.dot(tok,tok)*torch.dot(lastEmbed,lastEmbed))
            if cosine >= threshold:
                merge.append(tok)
                lastEmbed = torch.stack(merge).mean(dim=0)
            else:
                tokens.append(lastEmbed)
                merge=[]
                lastEmbed=tok
        newTensor.append(torch.stack(tokens))
    return torch.stack(newTensor)

STRENGTHS = ["highest", "high", "medium", "low", "lowest"]
STRENGTHS_VALUES = [1,2, 3,4,5]

class StyleModelApplySimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "image_strength": (STRENGTHS, {"default": "medium"})
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

    CATEGORY = "conditioning/style_model"

    def apply_stylemodel(self, clip_vision_output, style_model, conditioning, image_strength):
        stren = STRENGTHS.index(image_strength)
        downsampling_factor = STRENGTHS_VALUES[stren]
        mode="area" if downsampling_factor==3 else "bicubic"
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
        if downsampling_factor>1:
            (b,t,h)=cond.shape
            m = int(np.sqrt(t))
            cond=torch.nn.functional.interpolate(cond.view(b, m, m, h).transpose(1,-1), size=(m//downsampling_factor, m//downsampling_factor), mode=mode)#
            cond=cond.transpose(1,-1).reshape(b,-1,h)
        c = []
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
            c.append(n)
        return (c, )

def standardizeMask(mask):
    if mask is None:
        return None
    if len(mask.shape) == 2:
        (h,w)=mask.shape
        mask=mask.view(1,1,h,w)
    elif len(mask.shape)==3:
        (b,h,w)=mask.shape
        mask=mask.view(b,1,h,w)
    return mask

def crop(img, mask, box, desiredSize):
    (ox,oy,w,h) = box
    if mask is not None:
        mask=torch.nn.functional.interpolate(mask, size=(h,w), mode="bicubic").view(-1,h,w,1)
    img = torch.nn.functional.interpolate(img.transpose(-1,1), size=(w,h), mode="bicubic", antialias=True)
    return (img[:, :, ox:(desiredSize+ox), oy:(desiredSize+oy)].transpose(1,-1), None if mask == None else mask[:, oy:(desiredSize+oy), ox:(desiredSize+ox),:])

def letterbox(img, mask, w, h, desiredSize):
    (b,oh,ow,c) = img.shape
    img = torch.nn.functional.interpolate(img.transpose(-1,1), size=(w,h), mode="bicubic", antialias=True).transpose(1,-1)
    letterbox = torch.zeros(size=(b,desiredSize,desiredSize, c))
    offsetx = (desiredSize-w)//2
    offsety = (desiredSize-h)//2
    letterbox[:, offsety:(offsety+h), offsetx:(offsetx+w), :] += img
    img = letterbox
    if mask is not None:
        mask=torch.nn.functional.interpolate(mask, size=(h,w), mode="bicubic")
        letterbox = torch.zeros(size=(b,1,desiredSize,desiredSize))
        letterbox[:, :, offsety:(offsety+h), offsetx:(offsetx+w)] += mask
        mask = letterbox.view(b,1,desiredSize,desiredSize)
    return (img, mask)

def getBoundingBox(mask, w, h, relativeMargin, desiredSize):
    mask=mask.view(h,w)
    marginW = math.ceil(relativeMargin * w)
    marginH = math.ceil(relativeMargin * h)
    indices = torch.nonzero(mask, as_tuple=False)
    y_min, x_min = indices.min(dim=0).values
    y_max, x_max = indices.max(dim=0).values    
    x_min = max(0, x_min.item() - marginW)
    y_min = max(0, y_min.item() - marginH)
    x_max = min(w, x_max.item() + marginW)
    y_max = min(h, y_max.item() + marginH)
    
    box_width = x_max - x_min
    box_height = y_max - y_min
    
    larger_edge = max(box_width, box_height, desiredSize)
    if box_width < larger_edge:
        delta = larger_edge - box_width
        left_space = x_min
        right_space = w - x_max
        expand_left = min(delta // 2, left_space)
        expand_right = min(delta - expand_left, right_space)
        expand_left += min(delta - (expand_left+expand_right), left_space-expand_left)
        x_min -= expand_left
        x_max += expand_right

    if box_height < larger_edge:
        delta = larger_edge - box_height
        top_space = y_min
        bottom_space = h - y_max
        expand_top = min(delta // 2, top_space)
        expand_bottom = min(delta - expand_top, bottom_space)
        expand_top += min(delta - (expand_top+expand_bottom), top_space-expand_top)
        y_min -= expand_top
        y_max += expand_bottom

    x_min = max(0, x_min)
    y_min = max(0, y_min)
    x_max = min(w, x_max)
    y_max = min(h, y_max)
    return x_min, y_min, x_max, y_max


def patchifyMask(mask, patchSize=14):
    if mask is None:
        return mask
    (b, imgSize, imgSize,_) = mask.shape
    toks = imgSize//patchSize
    return torch.nn.MaxPool2d(kernel_size=(patchSize,patchSize),stride=patchSize)(mask.view(b,imgSize,imgSize)).view(b,toks,toks,1)

def prepareImageAndMask(visionEncoder, image, mask, mode, autocrop_margin, desiredSize=384):
    mode = IMAGE_MODES.index(mode)
    (B,H,W,C) = image.shape
    if mode==0: # center crop square
        imgsize = min(H,W)
        ratio = desiredSize/imgsize
        (w,h) = (round(W*ratio), round(H*ratio))
        image, mask = crop(image, standardizeMask(mask), ((w - desiredSize)//2, (h - desiredSize)//2, w, h), desiredSize)
    elif mode==1:
        if mask is None:
            mask = torch.ones(size=(B,H,W))
        imgsize = max(H,W)
        ratio = desiredSize/imgsize
        (w,h) = (round(W*ratio), round(H*ratio))
        image, mask = letterbox(image, standardizeMask(mask), w, h, desiredSize)
    elif mode==2:
        (bx,by,bx2,by2) = getBoundingBox(mask,W,H,autocrop_margin, desiredSize)
        image = image[:,by:by2,bx:bx2,:]
        mask = mask[:,by:by2,bx:bx2]
        imgsize = max(bx2-bx,by2-by)
        ratio = desiredSize/imgsize
        (w,h) = (round((bx2-bx)*ratio), round((by2-by)*ratio))
        image, mask = letterbox(image, standardizeMask(mask), w, h, desiredSize)
    return (image,mask)

def processMask(mask,imgSize=384, patchSize=14):
    if len(mask.shape) == 2:
        (h,w)=mask.shape
        mask=mask.view(1,1,h,w)
    elif len(mask.shape)==3:
        (b,h,w)=mask.shape
        mask=mask.view(b,1,h,w)
    scalingFactor = imgSize/min(h,w)
    # scale
    mask=torch.nn.functional.interpolate(mask, size=(round(h*scalingFactor),round(w*scalingFactor)), mode="bicubic")
    # crop
    horizontalBorder = (imgSize-mask.shape[3])//2
    verticalBorder = (imgSize-mask.shape[2])//2
    mask=mask[:, :, verticalBorder:(verticalBorder+imgSize),horizontalBorder:(horizontalBorder+imgSize)].view(b,imgSize,imgSize)
    toks = imgSize//patchSize
    return torch.nn.MaxPool2d(kernel_size=(patchSize,patchSize),stride=patchSize)(mask).view(b,toks,toks,1)

IMAGE_MODES = [
    "center crop (square)",
    "keep aspect ratio",
    "autocrop with mask"
]

class ReduxAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision": ("CLIP_VISION", ),
                             "image": ("IMAGE",),
                             "downsampling_factor": ("INT", {"default": 3, "min": 1, "max":9}),
                             "downsampling_function": (["nearest", "bilinear", "bicubic","area","nearest-exact"], {"default": "area"}),
                             "mode": (IMAGE_MODES, {"default": "center crop (square)"}),
                             "weight": ("FLOAT", {"default": 1.0, "min":0.0, "max":1.0, "step":0.01})
                            },
                "optional": {
                            "mask": ("MASK", ),
                            "autocrop_margin": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01})
                }}
    RETURN_TYPES = ("CONDITIONING","IMAGE", "MASK")
    FUNCTION = "apply_stylemodel"

    CATEGORY = "conditioning/style_model"

    def apply_stylemodel(self, clip_vision, image, style_model, conditioning, downsampling_factor, downsampling_function,mode,weight, mask=None, autocrop_margin=0.0):
        image, masko = prepareImageAndMask(clip_vision, image, mask, mode, autocrop_margin)
        clip_vision_output,mask=(clip_vision.encode_image(image), patchifyMask(masko))
        mode="area"
        cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
        (b,t,h)=cond.shape
        m = int(np.sqrt(t))
        if downsampling_factor>1:
            cond = cond.view(b, m, m, h)
            if mask is not None:
                cond = cond*mask
            cond=torch.nn.functional.interpolate(cond.transpose(1,-1), size=(m//downsampling_factor, m//downsampling_factor), mode=downsampling_function)
            cond=cond.transpose(1,-1).reshape(b,-1,h)
            mask = None if mask is None else torch.nn.functional.interpolate(mask.view(b, m, m, 1).transpose(1,-1), size=(m//downsampling_factor, m//downsampling_factor), mode=mode).transpose(-1,1)
        cond = cond*(weight*weight)
        c = []
        if mask is not None:
            mask = (mask>0).reshape(b,-1)
            max_len = mask.sum(dim=1).max().item()
            padded_embeddings = torch.zeros((b, max_len, h), dtype=cond.dtype, device=cond.device)
            for i in range(b):
                filtered = cond[i][mask[i]]
                padded_embeddings[i, :filtered.size(0)] = filtered
            cond = padded_embeddings

        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
            c.append(n)
        return (c, image, masko)


# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "StyleModelApplySimple": StyleModelApplySimple,
    "ReduxAdvanced": ReduxAdvanced
}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "StyleModelApplySimple": "Apply style model (simple)",
    "ReduxAdvanced": "Apply Redux model (advanced)"
}