File size: 28,673 Bytes
796891d
 
 
 
 
 
 
 
 
 
7ada547
796891d
 
 
 
 
 
7ada547
796891d
7ada547
796891d
 
 
7ada547
 
 
 
796891d
 
 
 
 
7ada547
 
796891d
7ada547
796891d
7ada547
 
 
 
 
 
 
436a7cd
 
 
 
 
 
 
 
7ada547
 
 
436a7cd
7ada547
 
436a7cd
7ada547
 
 
 
 
 
 
 
 
796891d
 
7ada547
 
796891d
 
 
 
 
 
 
 
 
 
 
7ada547
796891d
 
 
 
 
 
 
 
 
 
 
7ada547
796891d
7ada547
796891d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, balanced_accuracy_score
import warnings
warnings.filterwarnings("ignore", category=UserWarning, message="y_pred contains classes not in y_true")
sns.set_style("whitegrid")

class ModelEvaluator:
    def __init__(self, df_labels, df_predictions, model_name, categories = ['main-event', 'location', 'zone', 'light-conditions', 'weather-conditions', 'vehicles-density']):
        """
        Initialize the evaluator with ground truth labels and model predictions.
        """
        self.df_labels = df_labels
        self.df_predictions = df_predictions
        self.model_name = model_name
        self.categories = categories
        self.metrics_df = self.compute_metrics()
        
    def merge_data(self):
        """Merge ground truth labels with predictions based on 'id'."""
        merged_df = pd.merge(self.df_labels, self.df_predictions, on='id', suffixes=('_true', '_pred'))
        for category in list(set(self.categories) - set(['main-event'])):
            valid_values = self.df_labels[f"{category}"].unique().astype(str)
            merged_df = merged_df[merged_df[f"{category}_pred"].astype(str).isin(valid_values)]

        return merged_df

    def compute_metrics(self):
        """Compute precision, recall, F1-score, accuracy, and balanced accuracy for each class and category."""
        merged_df = self.merge_data()
        categories = self.categories
    
        results = []
    
        for category in categories:
            true_col = f"{category}_true"
            pred_col = f"{category}_pred"
    
            if true_col not in merged_df.columns or pred_col not in merged_df.columns:
                print(f"Skipping {category} - missing columns")
                continue
    
            filtered_df = merged_df[merged_df[true_col] != "unknown"]
    
            if filtered_df.empty:
                print(f"Skipping {category} - only 'unknown' values present.")
                continue
    
            y_true = filtered_df[true_col].astype(str)
            y_pred = filtered_df[pred_col].astype(str)
    
            valid_labels = sorted(set(y_true) | set(y_pred))
    
            valid_labels = [label for label in valid_labels if (y_true == label).sum() > 0 and label != "unknown"]
    
            if not valid_labels:
                print(f"Skipping {category} - No valid labels found after filtering.")
                continue
    
            class_precisions = precision_score(y_true, y_pred, labels=valid_labels, average=None, zero_division=0)
            class_recalls = recall_score(y_true, y_pred, labels=valid_labels, average=None, zero_division=0)
            class_f1 = f1_score(y_true, y_pred, labels=valid_labels, average=None, zero_division=0)
    
            overall_precision = precision_score(y_true, y_pred, labels=valid_labels, average='macro', zero_division=0)
            overall_recall = recall_score(y_true, y_pred, labels=valid_labels, average='macro', zero_division=0)
            overall_f1 = f1_score(y_true, y_pred, labels=valid_labels, average='macro', zero_division=0)
            overall_accuracy = accuracy_score(y_true, y_pred)
            overall_balanced_acc = balanced_accuracy_score(y_true, y_pred)
    
            for i, label in enumerate(valid_labels):
                results.append({
                    "Model": self.model_name,
                    "Category": category,
                    "Class": label,
                    "Precision": class_precisions[i],
                    "Recall": class_recalls[i],
                    "F1 Score": class_f1[i],
                    "Accuracy": np.nan,
                    "Balanced Acc.": np.nan,
                    "Support": (y_true == label).sum()
                })
    
            results.append({
                "Model": self.model_name,
                "Category": category,
                "Class": f"Overall ({category})",
                "Precision": overall_precision,
                "Recall": overall_recall,
                "F1 Score": overall_f1,
                "Accuracy": overall_accuracy,
                "Balanced Acc.": overall_balanced_acc,
                "Support": len(y_true)
            })
    
        df_res = pd.DataFrame(results)
        return df_res.loc[df_res['Support'] > 0].reset_index(drop=True)

    def get_metrics_df(self):
        """Return the computed metrics DataFrame."""
        return self.metrics_df


class ModelComparison:
    def __init__(self, evaluators):
        """
        Compare multiple models based on their evaluation results.

        :param evaluators: List of ModelEvaluator instances.
        """
        self.evaluators = evaluators
        self.combined_df = self.aggregate_metrics()

    def aggregate_metrics(self):
        """Merge evaluation metrics from multiple models into a single DataFrame."""
        dfs = [evaluator.get_metrics_df() for evaluator in self.evaluators]
        return pd.concat(dfs, ignore_index=True)

    def plot_category_comparison(self, metric="F1 Score"):
        """Compare models at the category level using a grouped bar chart with consistent styling."""
        df = self.combined_df[self.combined_df['Class'].str.contains("Overall")]
        
        plt.figure(figsize=(12, 6))
        colors = sns.color_palette("Set2", len(df["Model"].unique()))  # Consistent palette
    
        ax = sns.barplot(
            data=df, x="Category", y=metric, hue="Model", palette=colors, edgecolor="black", alpha=0.85
        )
        
        plt.title(f"{metric} Comparison Across Categories", fontsize=14, fontweight="bold")
        plt.ylim(0, 1)
        plt.xticks(rotation=45, fontsize=12)
        plt.yticks(fontsize=12)
        plt.xlabel("Category", fontsize=12)
        plt.ylabel(metric, fontsize=12)
        plt.legend(title="Model", fontsize=11, loc="upper left")
        plt.grid(axis="y", linestyle="--", alpha=0.6)
        
        plt.tight_layout()
        plt.show()
    
    
    def plot_per_class_comparison(self, category, metric="F1 Score"):
        """Compare models for a specific category across individual classes with a standardized design."""
        df = self.combined_df[(self.combined_df["Category"] == category) & (~self.combined_df["Class"].str.contains("Overall"))]
        
        plt.figure(figsize=(12, 6))
        colors = sns.color_palette("Set2", len(df["Model"].unique()))  # Consistent palette
    
        ax = sns.barplot(
            data=df, x="Class", y=metric, hue="Model", palette=colors, edgecolor="black", alpha=0.85
        )
        
        plt.title(f"{metric} for {category} by Model", fontsize=14, fontweight="bold")
        plt.ylim(0, 1)
        plt.xticks(rotation=45, fontsize=12)
        plt.yticks(fontsize=12)
        plt.xlabel("Class", fontsize=12)
        plt.ylabel(metric, fontsize=12)
        plt.legend(title="Model", fontsize=11, loc="upper left")
        plt.grid(axis="y", linestyle="--", alpha=0.6)
        
        plt.tight_layout()
        plt.show()

    def plot_precision_recall_per_class(self, class_name=None):
        """
        Creates a grouped bar chart per class, displaying precision & recall side by side for all models.
        Ensures a consistent design with plot_per_class_comparison and plot_category_comparison.
    
        :param class_name: (str) If provided, only this class will be plotted. If None, all classes will be plotted.
        """
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        
        sns.set_style("whitegrid")
        
        # Determine which classes to plot
        if class_name:
            unique_classes = [class_name]
        else:
            unique_classes = self.combined_df["Class"].unique()
        
        models = self.combined_df["Model"].unique()
        num_models = len(models)
        
        bar_width = 0.35  # Standardized width for better readability
        spacing = 0       # No extra spacing to match other plots
    
        colors = sns.color_palette("Set2", num_models)  # Consistent color palette
    
        for class_name in unique_classes:
            df_class = self.combined_df[self.combined_df["Class"] == class_name]
            
            if df_class.empty:
                print(f"No data available for class: {class_name}")
                continue
            
            plt.figure(figsize=(12, 6))
            
            metrics = ["Precision", "Recall"]
            x_indices = np.arange(len(metrics))  # X positions for metrics
    
            for i, model in enumerate(models):
                df_model = df_class[df_class["Model"] == model]
                
                if df_model.empty:
                    continue
                
                precision = df_model["Precision"].values[0]
                recall = df_model["Recall"].values[0]
    
                # Plot bars for Precision and Recall with consistent style
                plt.bar(
                    x_indices + (i * bar_width),  # No spacing, perfectly aligned
                    [precision, recall], 
                    width=bar_width, 
                    label=model, 
                    color=colors[i], 
                    alpha=0.85, 
                    edgecolor="black"  # Matches the other plots
                )
    
            plt.xlabel("Metric", fontsize=12)
            plt.ylabel("Score", fontsize=12)
            plt.title(f"Precision & Recall for Class: {class_name}", fontsize=14, fontweight="bold")
            
            # Adjust x-tick positions to align properly
            plt.xticks(x_indices + ((bar_width * (num_models - 1)) / 2), metrics, fontsize=12)
            
            plt.ylim(0, 1)
            plt.legend(title="Model", fontsize=11, loc="upper left")
            plt.grid(axis="y", linestyle="--", alpha=0.6)
    
            plt.tight_layout()
            plt.show()
 
    def plot_recall_trends(self, selected_models=None):
        """
        Plot recall trends per class across different models, sorted by recall values in descending order.
        
        :param selected_models: List of model names to include in the plot. If None, all models in the dataset will be used.
        """
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        
        sns.set_style("whitegrid")
        
        # If no specific models are provided, use all available models in the dataset
        if selected_models is None:
            selected_models = self.combined_df["Model"].unique().tolist()
    
        # Filter dataset to include only selected models
        df_filtered = self.combined_df[self.combined_df["Model"].isin(selected_models)]
        df_filtered_no_overall = df_filtered[~df_filtered["Class"].str.contains("Overall")]
    
        # Sort by recall values in descending order
        df_sorted = df_filtered_no_overall.sort_values(by="Recall", ascending=False)
    
        plt.figure(figsize=(12, 6))
        unique_classes = df_sorted["Class"].unique()
    
        # Define colors for models
        colors = dict(zip(selected_models, sns.color_palette("Set2", len(selected_models))))
    
        # Connect corresponding classes across models with thin lines (drawn first)
        for class_name in unique_classes:
            class_data = df_sorted[df_sorted["Class"] == class_name]
            if len(class_data) > 1:
                plt.plot(
                    class_data["Class"], class_data["Recall"], 
                    linestyle="-", alpha=0.5, color="gray", linewidth=1.5, zorder=1
                )
    
        # Plot scatter points **after** lines to ensure they are on top
        for model in selected_models:
            model_data = df_sorted[df_sorted["Model"] == model]
            plt.scatter(
                model_data["Class"], model_data["Recall"], 
                label=model, color=colors[model], edgecolor="black", s=120, alpha=1.0, zorder=2
            )
    
        plt.xlabel("Class", fontsize=12)
        plt.ylabel("Recall", fontsize=12)
        plt.xticks(rotation=45, ha="right", fontsize=12)
        plt.yticks(fontsize=12)
        plt.title("Recall per Class for Selected Models (Sorted by Recall)", fontsize=14, fontweight="bold")
    
        # Move legend to the right
        plt.legend(title="Model", fontsize=11, loc="upper right", bbox_to_anchor=(1.15, 1))
        
        plt.grid(axis="y", linestyle="--", alpha=0.6)
    
        plt.tight_layout()
        plt.show()
    
    def plot_metric(self, metric_name, figsize=(10, None), bar_height=0.8, palette="Set2", bar_spacing=0):
        """
        Creates a hierarchical visualization of metrics with category headers,
        sorted by category-average descending. Ensures slight separation between model bars.
        """
        colors = sns.color_palette(palette, len(self.evaluators))
        models = list(self.combined_df["Model"].unique())
    
        df = self.combined_df.copy()
        df = df.drop_duplicates(subset=['Category', 'Class', 'Model', metric_name])
    
        # Calculate average support per class
        avg_support = df.groupby(['Category', 'Class'])['Support'].mean().round().astype(int)
    
        # Function to safely retrieve metric values
        def safe_get_value(model, category, class_name):
            mask = (
                (df['Model'] == model) & 
                (df['Category'] == category) & 
                (df['Class'] == class_name)
            )
            values = df.loc[mask, metric_name]
            return values.iloc[0] if not values.empty else np.nan
    
        # Calculate category averages, excluding 'Global', and sort descending
        df_no_global = df[df['Category'] != 'Global']
        cat_avgs = df_no_global.groupby('Category', observed=False)[metric_name].mean()
        cat_avgs = cat_avgs.sort_values(ascending=False)
        categories_ordered = list(cat_avgs.index)
    
        if 'Global' in df['Category'].unique():
            categories_ordered.append('Global')
    
        plot_data = []
        yticks = []
        ylabels = []
        y_pos = 0
        category_positions = {}
    
        # Process each category and its classes
        for category in categories_ordered:
            if category == 'Global':
                continue
    
            category_data = df[df['Category'] == category]
            overall_class_name = f"Overall ({category})"
            mask_overall = category_data['Class'] == overall_class_name
            category_data_overall = category_data[mask_overall]
            category_data_regular = category_data[~mask_overall]
    
            if not category_data_regular.empty:
                class_means = category_data_regular.groupby('Class')[metric_name].mean()
                class_means = class_means.sort_values(ascending=False)
                sorted_regular_classes = list(class_means.index)
            else:
                sorted_regular_classes = []
    
            # Add category header
            category_start = y_pos
            yticks.append(y_pos)
            ylabels.append(category.upper())
            y_pos += 1
    
            # Add regular classes
            for class_name in sorted_regular_classes:
                values = {model: safe_get_value(model, category, class_name) for model in models}
                if any(not np.isnan(v) for v in values.values()):
                    plot_data.append({
                        'category': category,
                        'label': class_name,
                        'y_pos': y_pos,
                        'values': values,
                        'is_category': False
                    })
                    support = avg_support.get((category, class_name), 0)
                    yticks.append(y_pos)
                    ylabels.append(f"  {class_name} (n={support:,})")
                    y_pos += 1
    
            # Add overall class if exists
            if not category_data_overall.empty:
                values = {model: safe_get_value(model, category, overall_class_name) for model in models}
                if any(not np.isnan(v) for v in values.values()):
                    plot_data.append({
                        'category': category,
                        'label': overall_class_name,
                        'y_pos': y_pos,
                        'values': values,
                        'is_category': False
                    })
                    support = avg_support.get((category, overall_class_name), 0)
                    yticks.append(y_pos)
                    ylabels.append(f"  {overall_class_name} (n={support:,})")
                    y_pos += 1
    
            category_positions[category] = {
                'start': category_start,
                'end': y_pos - 1
            }
    
            y_pos += 0.5  # Spacing between categories
    
        # Calculate dynamic figure height based on number of items
        total_items = len(plot_data) + len(categories_ordered)
        dynamic_height = max(6, total_items * 0.4)
        if figsize[1] is None:
            figsize = (figsize[0], dynamic_height)
    
        # Plot the bars
        bar_width = bar_height / len(models)  # No extra spacing
    
        fig, ax = plt.subplots(figsize=figsize)
    
        for category in categories_ordered:
            if category == 'Global':
                continue
            cat_start = category_positions[category]['start'] - 0.4
            cat_end = category_positions[category]['end'] + 0.4
            ax.axhspan(cat_start, cat_end, color='lightgray', alpha=0.2, zorder=0)
    
        for i, (model, color) in enumerate(zip(models, colors)):
            positions = []
            values = []
            for item in plot_data:
                if not item.get('is_category', False):
                    positions.append(item['y_pos'] + (i - len(models)/2) * bar_width)
                    values.append(item['values'].get(model, np.nan))
    
            ax.barh(
                positions, values, height=bar_width, 
                label=model, color=color, alpha=0.85, edgecolor="black"
            )
    
        # Main title
        ax.set_title(f'{metric_name} Comparison Across Models', fontsize=16, fontweight='bold', pad=20)
    
        # Adjust axis labels and formatting
        ax.set_yticks(yticks)
        ax.set_yticklabels(ylabels, fontsize=10)
        ax.set_xlabel(metric_name, fontsize=12)
        ax.grid(True, axis='x', linestyle="--", alpha=0.7)
    
        # Invert y-axis to align properly
        ax.invert_yaxis()
        plt.legend(title="Model", bbox_to_anchor=(1.05, 1), loc='upper left')
    
        # Adjust layout with tighter margins
        plt.subplots_adjust(left=0.25, right=0.8, top=0.95, bottom=0.1)
        plt.tight_layout()
    
        return fig
        
    def plot_precision_recall_for_category(self, category, palette="Set2"):
        """
        Creates a modernized Precision-Recall scatter plot for each class within a given category.
        """
        import matplotlib.pyplot as plt
        import seaborn as sns
        import math
        import numpy as np
        
        # Set modern style
        plt.rcParams['font.size'] = 12
        
        # Filter data for the selected category
        df = self.combined_df[self.combined_df["Category"] == category].copy()
        if df.empty:
            print(f"No data available for category: {category}")
            return None
                
        # Remove overall category-level rows
        class_data = df[~df["Class"].str.contains("Overall")]
        
        # Get unique models and classes
        models = df["Model"].unique()
        colors = dict(zip(models, sns.color_palette(palette, len(models))))
        classes = sorted(class_data["Class"].unique())
        
        # Determine grid size
        cols = 2
        rows = math.ceil(len(classes) / cols)
        
        # Create figure with adjusted size
        fig, axes = plt.subplots(rows, cols, figsize=(16, rows * 6))
        
        # Set global title with better spacing
        fig.suptitle(f'Precision-Recall Analysis for {category}', 
                     fontsize=20, fontweight='bold', y=1.02)
    
        # Iterate over classes and create scatter plots
        for i, class_name in enumerate(classes):
            row, col = divmod(i, cols)
            ax = axes[row, col] if rows > 1 else axes[col]  # Ensure indexing works for 1-row cases
            
            # Create scatter plot
            class_subset = class_data[class_data["Class"] == class_name]
            sns.scatterplot(
                data=class_subset,
                x="Precision",
                y="Recall",
                hue="Model",
                palette=colors,
                ax=ax,
                s=200,
                alpha=0.85,
                edgecolor="black"
            )
            
            # Add labels with lines for each point
            for idx, row in class_subset.iterrows():
                ax.annotate(
                    row["Model"],
                    (row["Precision"], row["Recall"]),
                    xytext=(8, 8), textcoords='offset points',  # Adjusted to reduce overlap
                    bbox=dict(facecolor='white', alpha=0.7),
                    arrowprops=dict(
                        arrowstyle='->', 
                        connectionstyle='arc3,rad=0.2',
                        color='black'
                    )
                )
            
            ax.set_title(f"Class: {class_name}", fontsize=16, fontweight="bold", pad=20)
            ax.set_xlim(-0.05, 1.05)
            ax.set_ylim(-0.05, 1.05)
            ax.grid(True, linestyle="--", alpha=0.5)
            ax.set_aspect("equal", adjustable="box")
            
            # Remove legend as we now have direct labels
            ax.get_legend().remove()
            
            # Add labels
            ax.set_xlabel("Precision", fontsize=14)
            ax.set_ylabel("Recall", fontsize=14)
    
        # Remove empty subplots if classes < grid size
        for j in range(i + 1, rows * cols):
            fig.delaxes(axes.flatten()[j])
    
        # Adjust layout with better spacing
        fig.subplots_adjust(top=0.92, bottom=0.08, left=0.08, right=0.92, hspace=0.35, wspace=0.3)
    
        return fig
    
    def plot_normalized_radar_chart(self, metric_name="F1 Score", exclude_categories=None, figsize=(12, 10), palette="Set2"):
        """
        Create a normalized radar chart comparing performance across different categories.
        Each vertex is normalized independently based on its maximum value.
        """
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from matplotlib.patches import Circle
    
        sns.set_style("whitegrid")
    
        # Copy data and filter exclusions
        df = self.combined_df.copy()
        if exclude_categories:
            df = df[~df["Category"].isin(exclude_categories)]
    
        # Get unique categories and models
        categories = sorted(df["Category"].unique())
        models = sorted(df["Model"].unique())
    
        # Define colors for models
        colors = dict(zip(models, sns.color_palette(palette, len(models))))
    
        # Create figure
        fig = plt.figure(figsize=figsize)
        ax = plt.subplot(111, polar=True)
        
        # Add subtle background circles
        for radius in np.linspace(0, 1, 5):
            circle = Circle((0, 0), radius, transform=ax.transData._b, 
                           fill=True, color='gray', alpha=0.03)
            ax.add_artist(circle)
        
        # Number of categories and angles
        N = len(categories)
        angles = np.linspace(0, 2 * np.pi, N, endpoint=False).tolist()
        angles += angles[:1]  # Close the circle
    
        # Get max values for each category
        df_overall = df[df["Class"].str.contains("Overall")]
        max_values = df_overall.groupby("Category")[metric_name].max().to_dict()
    
        # Store normalized values for all models
        normalized_values = {}
    
        # Normalize values for each model
        for model in models:
            values = []
            for cat in categories:
                val = df_overall[(df_overall["Model"] == model) & 
                               (df_overall["Category"] == cat)][metric_name].values
                val = val[0] if len(val) > 0 else 0
                norm_val = val / max_values[cat] if max_values[cat] > 0 else 0
                values.append(norm_val)
            normalized_values[model] = values + [values[0]]
    
        # Plot each model with improved styling
        for model, values in normalized_values.items():
            color = colors[model]
            
            # Add filled area with gradient
            ax.fill(angles, values, color=color, alpha=0.15, 
                    edgecolor=color, linewidth=0.5)
            
            # Add main line
            ax.plot(angles, values, 
                    linewidth=2.5, linestyle='solid', 
                    label=model, color=color, alpha=0.85,
                    zorder=5)
    
        # Adjust axis settings
        ax.set_theta_offset(np.pi / 2)
        ax.set_theta_direction(-1)
        ax.set_yticklabels([])
    
        # Draw category labels
        ax.set_thetagrids(np.degrees(angles[:-1]), categories, 
                          fontsize=12, fontweight="bold")
    
        # Add scale labels with improved positioning
        for i, (category, angle) in enumerate(zip(categories, angles[:-1])):
            max_val = max_values[category]
            scales = np.linspace(0, max_val, 5)
            
            for j, scale in enumerate(scales):
                radius = j/4
                
                # Skip zero as we'll add it separately in the center
                if radius > 0:
                    ha = 'center'
                    va = 'center'
                    
                    ax.text(angle, radius, f'{scale:.2f}', 
                            ha=ha, va=va,
                            color='gray', fontsize=9, fontweight='bold')
        
        # Add centered zero
        ax.text(0, 0, '0.00', 
                ha='center', va='center',
                color='gray', fontsize=9, fontweight='bold')
    
        # Customize grid with softer lines
        ax.grid(True, color='gray', alpha=0.3, linewidth=0.5)
        ax.yaxis.grid(True, color='gray', alpha=0.3, linewidth=0.5)
        ax.set_rticks(np.linspace(0, 1, 5))
    
        # Add a subtle background color to the entire plot
        ax.set_facecolor('#f8f9fa')
    
        # Set title and legend
        plt.title(f'Model Performance Radar Chart - {metric_name}', 
                  pad=20, fontsize=14, fontweight="bold")
        plt.legend(title="Model", fontsize=11, 
                  loc="upper right", bbox_to_anchor=(1.3, 1))
        
        # Adjust aspect ratio
        ax.set_aspect('equal')
        
        plt.tight_layout()
        return fig

    def transform_to_leaderboard(self):
        # Remove class-level rows, keeping only category-level rows
        df = self.combined_df.copy()
        df = df[~df['Class'].str.contains('Overall', na=False)]
        
        # Pivot the table so that each category gets its own set of columns
        pivoted_df = df.pivot_table(
            index='Model', 
            columns='Category', 
            values=['Precision', 'Recall', 'F1 Score', 'Accuracy'], 
            aggfunc='mean'  # Take mean in case of multiple entries
        )
        
        # Flatten the multi-level columns
        pivoted_df.columns = ['_'.join(col).strip() for col in pivoted_df.columns.values]
        
        # Calculate the average F1 score across all categories for ranking
        pivoted_df['Average F1 Score'] = pivoted_df.filter(like='F1 Score').mean(axis=1)
        
        # Move 'Average F1 Score' to be the first column after 'Model'
        pivoted_df = pivoted_df.reset_index()
        cols = ['Model', 'Average F1 Score'] + [col for col in pivoted_df.columns if col not in ['Model', 'Average F1 Score']]
        pivoted_df = pivoted_df[cols]
        
        # Rank models based on their average F1 Score
        pivoted_df = pivoted_df.sort_values(by='Average F1 Score', ascending=False).reset_index(drop=True)
        pivoted_df.insert(0, 'Rank', range(1, len(pivoted_df) + 1))
        
        return pivoted_df