File size: 24,323 Bytes
856dd60 715fa12 856dd60 715fa12 c7ebe09 715fa12 856dd60 87b7870 856dd60 715fa12 87b7870 715fa12 15e367b 856dd60 e02c28e 326cd70 0f63d2b e02c28e 9cd8ecb e02c28e d4ae493 e02c28e d4ae493 e02c28e d4ae493 e02c28e d4ae493 e02c28e 15e367b 9cd8ecb bd3552e 0f63d2b 715fa12 070d159 856dd60 5532e86 15e6164 5532e86 15e6164 5532e86 856dd60 715fa12 856dd60 715fa12 5532e86 2fd2cfa 715fa12 856dd60 715fa12 856dd60 715fa12 5ec6b1b 715fa12 5ec6b1b 856dd60 715fa12 856dd60 5ec6b1b 0909f18 ef3c6a4 856dd60 715fa12 a197e82 715fa12 a197e82 4150653 715fa12 5ec6b1b 4150653 4e1097d 715fa12 4e1097d 4150653 4e1097d 4150653 4e1097d a197e82 715fa12 0b43fec 715fa12 0b43fec a197e82 715fa12 a197e82 715fa12 a197e82 0b43fec 5ec6b1b 715fa12 0b43fec 715fa12 0b43fec 715fa12 0b43fec 715fa12 0b43fec 856dd60 715fa12 856dd60 715fa12 856dd60 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 715fa12 474be4b 856dd60 715fa12 474be4b 856dd60 715fa12 55d5643 907f5aa 5532e86 715fa12 907f5aa 715fa12 907f5aa 715fa12 907f5aa 715fa12 907f5aa 715fa12 907f5aa 715fa12 907f5aa 55d5643 907f5aa 715fa12 907f5aa 715fa12 55d5643 715fa12 286c370 55d5643 dc5408d 715fa12 286c370 715fa12 286c370 715fa12 286c370 907f5aa 715fa12 286c370 715fa12 a3cc365 653c747 a3cc365 653c747 3a57b4b 0f3a398 a3cc365 0f3a398 715fa12 a3cc365 3a57b4b 715fa12 286c370 907f5aa 715fa12 55d5643 715fa12 907f5aa 715fa12 907f5aa 715fa12 55d5643 715fa12 55d5643 715fa12 55d5643 715fa12 55d5643 907f5aa 715fa12 907f5aa 715fa12 907f5aa 55d5643 715fa12 907f5aa 715fa12 907f5aa 55d5643 715fa12 907f5aa 715fa12 907f5aa 286c370 907f5aa 286c370 55d5643 b88563e 907f5aa 715fa12 907f5aa 715fa12 55d5643 907f5aa 715fa12 55d5643 715fa12 907f5aa 715fa12 907f5aa 715fa12 907f5aa 55d5643 907f5aa 715fa12 907f5aa 715fa12 907f5aa 55d5643 907f5aa 715fa12 907f5aa 715fa12 907f5aa 55d5643 286c370 907f5aa 286c370 55d5643 907f5aa 715fa12 907f5aa 715fa12 856dd60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from comparison import ModelEvaluator, ModelComparison
import matplotlib.pyplot as plt
import seaborn as sns
import io
import os
import base64
# Page config
st.set_page_config(
page_title="Nexar Driving Leaderboard",
page_icon="nexar_logo.png",
layout="wide"
)
# Custom styling
st.markdown("""
<style>
.main { padding: 2rem; }
.stTabs [data-baseweb="tab-list"] { gap: 8px; }
.stTabs [data-baseweb="tab"] {
padding: 8px 16px;
border-radius: 4px;
}
.metric-card {
background-color: #f8f9fa;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
# Header
col1, col2 = st.columns([0.15, 0.85])
with col1:
st.image("nexar_logo.png", width=600)
with col2:
st.title("Driving Leaderboard")
# Data loading function
@st.cache_data
def load_data(directory='results', labels_filename='Labels.csv'):
labels_path = os.path.join(directory, labels_filename)
df_labels = pd.read_csv(labels_path)
evaluators = []
for filename in os.listdir(directory):
if filename.endswith('.csv') and filename != labels_filename:
model_name = os.path.splitext(filename)[0]
df_model = pd.read_csv(os.path.join(directory, filename))
evaluator = ModelEvaluator(df_labels, df_model, model_name)
evaluators.append(evaluator)
model_comparison = ModelComparison(evaluators)
return model_comparison
# Initialize session state
if 'model_comparison' not in st.session_state:
st.session_state.model_comparison = load_data()
st.session_state.leaderboard_df = st.session_state.model_comparison.transform_to_leaderboard()
st.session_state.combined_df = st.session_state.model_comparison.combined_df
# Create tabs
tab1, tab2, tab3, tab4 = st.tabs([
"π Leaderboard",
"π Class Performance",
"π Detailed Metrics",
"βοΈ Model Comparison"
])
def style_dataframe(df, highlight_first_column=True, show_progress_bars=True):
numeric_cols = df.select_dtypes(include=['float64']).columns
def color_background(val):
"""Return background color style based on value"""
return f'background-color: rgba({int(255 * (1 - val))}, {int(255 * val)}, 0, 0.2)'
def apply_colors_to_series(s):
"""Apply color gradient to a series of values"""
if len(s) == 0:
return []
normalized = (s - s.min()) / (s.max() - s.min()) if s.max() != s.min() else [0.5] * len(s)
return [color_background(val) for val in normalized]
styled = df.style.format({col: '{:.2f}%' for col in numeric_cols})
# First apply highlighting to first column if needed
if highlight_first_column and len(numeric_cols) > 0:
first_numeric_col = numeric_cols[0]
styled = styled.apply(lambda x: [
'background-color: rgba(74, 144, 226, 0.2)' if col == first_numeric_col else ''
for col in df.columns
], axis=1)
# Then apply color gradients if needed
if show_progress_bars:
for col in numeric_cols:
styled = styled.apply(lambda s: apply_colors_to_series(s), subset=[col])
styled = styled.set_properties(**{
'padding': '10px',
'border': '1px solid #dee2e6',
'text-align': 'center'
})
styled = styled.set_table_styles([
{'selector': 'th', 'props': [
('background-color', '#4a90e2'),
('color', 'white'),
('font-weight', 'bold'),
('padding', '10px'),
('text-align', 'center')
]},
{'selector': 'tr:hover', 'props': [
('background-color', '#edf2f7')
]}
])
return styled
def style_comparison_dataframe(df):
"""Style dataframe specifically for model comparison tables"""
# Format all numeric columns as percentages
numeric_cols = df.select_dtypes(include=['float64']).columns
styled = df.style.format({col: '{:.2f}%' for col in numeric_cols})
def color_difference(x):
"""Color the difference column from red to green"""
if pd.isna(x):
return ''
# Normalize the value to a -1 to 1 scale for coloring
normalized = max(min(x / 10, 1), -1) # Scale of Β±10%
if normalized > 0:
return f'background-color: rgba(0, 128, 0, {abs(normalized) * 0.3})'
else:
return f'background-color: rgba(255, 0, 0, {abs(normalized) * 0.3})'
# Apply color gradient only to the 'Difference' column
if 'Difference' in df.columns:
styled = styled.applymap(color_difference, subset=['Difference'])
styled = styled.set_properties(**{
'padding': '10px',
'border': '1px solid #dee2e6',
'text-align': 'center'
})
styled = styled.set_table_styles([
{'selector': 'th', 'props': [
('background-color', '#4a90e2'),
('color', 'white'),
('font-weight', 'bold'),
('padding', '10px'),
('text-align', 'center')
]},
{'selector': 'tr:hover', 'props': [
('background-color', '#edf2f7')
]}
])
return styled
# Tab 1: Leaderboard
with tab1:
st.subheader("Model Performance Leaderboard")
st.markdown("""
**Welcome to the Nexar Driving Leaderboard!**
This dashboard compares the performance of various AI models in detecting driving incidents.
The models are evaluated based on key metrics such as F1 Score, Precision, and Recall.
You can sort the table by different metrics using the dropdown menu.
""")
st.markdown("""
The table below ranks models based on their ability to detect driving events.
Use the dropdown below to sort by a specific metric.
""")
sort_col = st.selectbox(
"Sort by metric:",
options=[col for col in st.session_state.leaderboard_df.columns if col not in ['Rank', 'Model']],
key='leaderboard_sort'
)
sorted_df = st.session_state.leaderboard_df.sort_values(by=sort_col, ascending=False)
st.dataframe(
style_dataframe(sorted_df),
use_container_width=True,
)
metrics = ['F1 Score', 'Precision', 'Recall']
selected_metric = st.selectbox("Select Metric for Category Analysis:", metrics)
category_data = st.session_state.combined_df[
st.session_state.combined_df['Class'].str.contains('Overall')
]
fig = px.bar(
category_data,
x='Category',
y=selected_metric,
color='Model',
barmode='group',
title=f'Category-level {selected_metric} by Model',
)
fig.update_layout(
xaxis_title="Category",
yaxis_title=selected_metric,
legend_title="Model"
)
st.plotly_chart(fig, use_container_width=True)
# Tab 2: Class Performance
with tab2:
st.subheader("Class-Level Performance Analysis")
st.markdown("""
This section provides a detailed breakdown of model performance across specific event classes.
You can select a category, metric, and models to compare their effectiveness in recognizing
different types of driving incidents.
""")
categories = st.session_state.combined_df['Category'].unique()
col1, col2, col3 = st.columns(3)
with col1:
selected_category = st.selectbox(
"Select Category:",
categories,
key='class_category'
)
with col2:
selected_metric = st.selectbox(
"Select Metric:",
metrics,
key='class_metric'
)
with col3:
selected_models = st.multiselect(
"Select Models:",
st.session_state.combined_df['Model'].unique(),
default=st.session_state.combined_df['Model'].unique()
)
# Create a consistent color mapping for all models
plotly_colors = ['#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A', '#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52']
model_colors = {model: plotly_colors[i % len(plotly_colors)] for i, model in enumerate(sorted(st.session_state.combined_df['Model'].unique()))}
class_data = st.session_state.combined_df[
(st.session_state.combined_df['Category'] == selected_category) &
(~st.session_state.combined_df['Class'].str.contains('Overall')) &
(st.session_state.combined_df['Model'].isin(selected_models))
]
# Bar chart with consistent colors
fig = px.bar(
class_data,
x='Class',
y=selected_metric,
color='Model',
barmode='group',
title=f'{selected_metric} by Class for {selected_category}',
color_discrete_map=model_colors,
range_y=[0, 1] if selected_metric in ['F1 Score', 'Precision', 'Recall'] else None
)
st.plotly_chart(fig, use_container_width=True)
# Calculate how many columns we need (aim for about 4-5 models per row)
models_per_row = 4
num_rows = (len(selected_models) + models_per_row - 1) // models_per_row
st.markdown("### Select Models to Display:")
# Create toggles for models using st.columns
for row in range(num_rows):
cols = st.columns(models_per_row)
for col_idx in range(models_per_row):
model_idx = row * models_per_row + col_idx
if model_idx < len(selected_models):
model = selected_models[model_idx]
container = cols[col_idx].container()
# Get the consistent color for this model
color = model_colors[model]
# Initialize toggle state if needed
toggle_key = f"toggle_{model}"
if toggle_key not in st.session_state:
st.session_state[toggle_key] = True
# Create colored legend item with HTML
container.markdown(
f"""
<div style='display: flex; align-items: center; margin-bottom: -40px; pointer-events: none;'>
<span style='display: inline-block; width: 12px; height: 12px; background-color: {color}; border-radius: 50%; margin-right: 8px;'></span>
</div>
""",
unsafe_allow_html=True
)
# Create the checkbox without reassigning to session state
container.checkbox(
f" {model}", # Add some spacing to account for the circle
value=st.session_state[toggle_key],
key=toggle_key # Use toggle_key directly as the key
)
# Individual Precision-Recall plots for each class
unique_classes = class_data['Class'].unique()
num_classes = len(unique_classes)
# Calculate number of rows needed (3 plots per row)
num_rows = (num_classes + 2) // 3 # Using ceiling division
# Create plots row by row
for row in range(num_rows):
cols = st.columns(3)
for col_idx in range(3):
class_idx = row * 3 + col_idx
if class_idx < num_classes:
current_class = unique_classes[class_idx]
# Filter data based on visible models
visible_models = [model for model in selected_models
if st.session_state[f"toggle_{model}"]]
class_specific_data = class_data[
(class_data['Class'] == current_class) &
(class_data['Model'].isin(visible_models))
]
fig = px.scatter(
class_specific_data,
x='Precision',
y='Recall',
color='Model',
title=f'Precision vs Recall: {current_class}',
height=300,
color_discrete_map=model_colors # Use consistent colors
)
# Update layout for better visibility
fig.update_layout(
xaxis_range=[0, 1],
yaxis_range=[0, 1],
margin=dict(l=40, r=40, t=40, b=40),
showlegend=False # Hide individual legends
)
# Add diagonal reference line
fig.add_trace(
go.Scatter(
x=[0, 1],
y=[0, 1],
mode='lines',
line=dict(dash='dash', color='gray'),
showlegend=False
)
)
cols[col_idx].plotly_chart(fig, use_container_width=True)
# Tab 3: Detailed Metrics
with tab3:
st.subheader("Detailed Metrics Analysis")
selected_model = st.selectbox(
"Select Model for Detailed Analysis:",
st.session_state.combined_df['Model'].unique()
)
model_data = st.session_state.combined_df[
st.session_state.combined_df['Model'] == selected_model
]
# Create metrics tables
st.markdown("### Performance Metrics by Category")
# Get unique categories and relevant classes for each category
categories = model_data['Category'].unique()
metrics = ['F1 Score', 'Precision', 'Recall']
# Process data for each category
for category in categories:
st.markdown(f"#### {category}")
# Filter data for this category
category_data = model_data[model_data['Category'] == category].copy()
# Create a clean table for this category
category_metrics = pd.DataFrame()
# Get classes for this category (excluding 'Overall' prefix)
classes = category_data[~category_data['Class'].str.contains('Overall')]['Class'].unique()
# Add the overall metric for this category
overall_data = category_data[category_data['Class'].str.contains('Overall')]
# Initialize the DataFrame with classes as index
category_metrics = pd.DataFrame(index=classes)
# Add metrics columns
for metric in metrics:
# Add class-specific metrics
class_metrics = {}
for class_name in classes:
class_data = category_data[category_data['Class'] == class_name]
if not class_data.empty:
class_metrics[class_name] = class_data[metric].iloc[0]
category_metrics[metric] = pd.Series(class_metrics)
# Add overall metrics as a separate row
if not overall_data.empty:
overall_row = pd.DataFrame({
metric: [overall_data[metric].iloc[0]] for metric in metrics
}, index=['Overall'])
category_metrics = pd.concat([overall_row, category_metrics])
# Display the table
styled_metrics = style_dataframe(category_metrics.round(4))
st.dataframe(styled_metrics, use_container_width=True)
# Add spacing between categories
st.markdown("---")
# Export functionality
st.markdown("### Export Data")
# Prepare export data
export_data = pd.DataFrame()
for category in categories:
category_data = model_data[model_data['Category'] == category].copy()
category_metrics = pd.pivot_table(
category_data,
index='Class',
values=metrics,
aggfunc='first'
).round(4)
export_data = pd.concat([export_data, category_metrics])
# Create download button
csv = export_data.to_csv().encode()
st.download_button(
"Download Detailed Metrics",
csv,
f"detailed_metrics_{selected_model}.csv",
"text/csv",
key='download-csv'
)
# Tab 4: Model Comparison
with tab4:
st.header("Model Comparison Analysis")
st.markdown("""
Compare two models side by side across different categories.
The bar chart visualizes the differences in performance across selected categories,
while the scatter plot provides an overview of Precision vs. Recall per class.
""")
# Create two columns for model selection
col1, col2 = st.columns(2)
# Model selection dropdown menus
with col1:
model1 = st.selectbox(
"Select First Model:",
st.session_state.combined_df['Model'].unique(),
key='model1'
)
with col2:
# Filter out the first selected model from options
available_models = [m for m in st.session_state.combined_df['Model'].unique() if m != model1]
model2 = st.selectbox(
"Select Second Model:",
available_models,
key='model2'
)
# Category selection
selected_category = st.selectbox(
"Select Category for Comparison:",
st.session_state.combined_df['Category'].unique(),
key='compare_category'
)
# Filter data for both models
model1_data = st.session_state.combined_df[
(st.session_state.combined_df['Model'] == model1) &
(st.session_state.combined_df['Category'] == selected_category)
]
model2_data = st.session_state.combined_df[
(st.session_state.combined_df['Model'] == model2) &
(st.session_state.combined_df['Category'] == selected_category)
]
# Define metrics list
metrics = ['F1 Score', 'Precision', 'Recall']
# Create comparison tables section
st.subheader("Detailed Metrics Comparison")
# Create a table for each metric
for metric in metrics:
st.markdown(f"#### {metric} Comparison")
# Prepare data for the metric table
metric_data = []
for class_name in model1_data['Class'].unique():
# Get values for both models
m1_value = model1_data[model1_data['Class'] == class_name][metric].iloc[0]
m2_value = model2_data[model2_data['Class'] == class_name][metric].iloc[0]
diff = m1_value - m2_value
# Add to comparison data
metric_data.append({
'Class': class_name,
model1: m1_value,
model2: m2_value,
'Difference': diff
})
# Create DataFrame for the metric
metric_df = pd.DataFrame(metric_data)
# Style the table
def style_metric_table(df):
return df.style\
.format({
model1: '{:.2f}%',
model2: '{:.2f}%',
'Difference': '{:+.2f}%'
})\
.background_gradient(
cmap='RdYlGn',
subset=['Difference'],
vmin=-10,
vmax=10
)\
.set_properties(**{
'text-align': 'center',
'padding': '10px',
'border': '1px solid #dee2e6'
})\
.set_table_styles([
{'selector': 'th', 'props': [
('background-color', '#4a90e2'),
('color', 'white'),
('font-weight', 'bold'),
('text-align', 'center'),
('padding', '10px')
]}
])
# Display the styled table
def color_negative_positive(val):
try:
color = 'green' if float(val) > 0 else 'red' if float(val) < 0 else 'black'
return f'color: {color}'
except:
return ''
styled_df = metric_df.style\
.applymap(color_negative_positive)\
.format(precision=2)
st.dataframe(styled_df, use_container_width=True)
# Add visual separator
st.markdown("---")
# Visualizations section
st.subheader("Visual Performance Analysis")
# Metric selector for bar chart
selected_metric = st.selectbox(
"Select Metric for Comparison:",
metrics,
key='compare_metric'
)
# Prepare data for bar chart
comparison_data = pd.DataFrame()
# Get data for both models
for idx, (model_name, model_data) in enumerate([(model1, model1_data), (model2, model2_data)]):
# Filter out Overall classes and select relevant columns
model_metrics = model_data[~model_data['Class'].str.contains('Overall', na=False)][['Class', selected_metric]]
model_metrics = model_metrics.rename(columns={selected_metric: model_name})
# Merge with existing data or create new DataFrame
if idx == 0:
comparison_data = model_metrics
else:
comparison_data = comparison_data.merge(model_metrics, on='Class', how='outer')
# Create bar chart
fig_bar = go.Figure()
# Add bars for first model
fig_bar.add_trace(go.Bar(
name=model1,
x=comparison_data['Class'],
y=comparison_data[model1],
marker_color='rgb(55, 83, 109)'
))
# Add bars for second model
fig_bar.add_trace(go.Bar(
name=model2,
x=comparison_data['Class'],
y=comparison_data[model2],
marker_color='rgb(26, 118, 255)'
))
# Update bar chart layout
fig_bar.update_layout(
title=f"{selected_metric} Comparison by Class",
xaxis_title="Class",
yaxis_title=f"{selected_metric} (%)",
barmode='group',
xaxis_tickangle=-45,
height=500,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
yaxis=dict(range=[0, 1])
)
# Display bar chart
st.plotly_chart(fig_bar, use_container_width=True)
# Create Precision-Recall scatter plot
st.markdown("#### Precision-Recall Analysis")
# Filter data for scatter plot
model1_scatter = model1_data[~model1_data['Class'].str.contains('Overall', na=False)]
model2_scatter = model2_data[~model2_data['Class'].str.contains('Overall', na=False)]
# Create scatter plot
fig_scatter = go.Figure()
# Add scatter points for first model
fig_scatter.add_trace(go.Scatter(
x=model1_scatter['Precision']*100,
y=model1_scatter['Recall']*100,
mode='markers+text',
name=model1,
text=model1_scatter['Class'],
textposition="top center",
marker=dict(size=10)
))
# Add scatter points for second model
fig_scatter.add_trace(go.Scatter(
x=model2_scatter['Precision']*100,
y=model2_scatter['Recall']*100,
mode='markers+text',
name=model2,
text=model2_scatter['Class'],
textposition="top center",
marker=dict(size=10)
))
# Add reference line
fig_scatter.add_trace(go.Scatter(
x=[0, 100],
y=[0, 100],
mode='lines',
line=dict(dash='dash', color='gray'),
showlegend=False
))
# Update scatter plot layout
fig_scatter.update_layout(
title="Precision vs Recall Analysis by Class",
xaxis_title="Precision (%)",
yaxis_title="Recall (%)",
xaxis=dict(range=[0, 100]),
yaxis=dict(range=[0, 100]),
height=600,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
)
)
# Display scatter plot
st.plotly_chart(fig_scatter, use_container_width=True)
# Footer
st.markdown("---")
st.markdown("Dashboard created for model evaluation and comparison")
st.markdown("Β© 2024 Nexar") |