File size: 8,659 Bytes
796891d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from comparison import ModelEvaluator, ModelComparison
import matplotlib.pyplot as plt
import seaborn as sns
import io
import os
import base64
st.set_page_config(
page_title="Nexar Dashcam Leaderboard",
page_icon="nexar_logo.png",
layout="wide"
)
st.markdown("""
<style>
.main { padding: 2rem; }
.stTabs [data-baseweb="tab-list"] { gap: 8px; }
.stTabs [data-baseweb="tab"] {
padding: 8px 16px;
border-radius: 4px;
}
.metric-card {
background-color: #f8f9fa;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
col1, col2 = st.columns([0.15, 0.85])
with col1:
st.image("nexar_logo.png", width=600)
with col2:
st.title("Nexar Dashcam Leaderboard")
@st.cache_data
def load_data(directory='results', labels_filename='Labels.csv'):
labels_path = os.path.join(directory, labels_filename)
df_labels = pd.read_csv(labels_path)
evaluators = []
for filename in os.listdir(directory):
if filename.endswith('.csv') and filename != labels_filename:
model_name = os.path.splitext(filename)[0]
df_model = pd.read_csv(os.path.join(directory, filename))
evaluator = ModelEvaluator(df_labels, df_model, model_name)
evaluators.append(evaluator)
model_comparison = ModelComparison(evaluators)
return model_comparison
if 'model_comparison' not in st.session_state:
st.session_state.model_comparison = load_data()
st.session_state.leaderboard_df = st.session_state.model_comparison.transform_to_leaderboard()
st.session_state.combined_df = st.session_state.model_comparison.combined_df
tab1, tab2, tab3, tab4 = st.tabs([
"π Leaderboard",
"π― Category Analysis",
"π Class Performance",
"π Detailed Metrics"
])
def style_dataframe(df):
numeric_cols = df.select_dtypes(include=['float64']).columns
def background_gradient(s):
normalized = (s - s.min()) / (s.max() - s.min())
normalized = normalized.fillna(0) # Handle NaN values
return ['background: linear-gradient(90deg, rgba(52, 152, 219, 0.2) {}%, transparent {}%)'.format(
int(val * 100), int(val * 100)) for val in normalized]
def highlight_max(s):
is_max = s == s.max()
return ['font-weight: bold; color: #2ecc71' if v else '' for v in is_max]
styled = df.style\
.format({col: '{:.2f}%' for col in numeric_cols})\
.apply(background_gradient, subset=numeric_cols)\
.apply(highlight_max, subset=numeric_cols)\
.set_properties(**{
'background-color': '#f8f9fa',
'padding': '10px',
'border': '1px solid #dee2e6',
'text-align': 'center'
})\
.set_table_styles([
{'selector': 'th', 'props': [
('background-color', '#4a90e2'),
('color', 'white'),
('font-weight', 'bold'),
('padding', '10px'),
('text-align', 'center')
]},
{'selector': 'tr:hover', 'props': [
('background-color', '#edf2f7')
]}
])
return styled
with tab1:
st.subheader("Model Performance Leaderboard")
sort_col = st.selectbox(
"Sort by metric:",
options=[col for col in st.session_state.leaderboard_df.columns if col not in ['Rank', 'Model']],
key='leaderboard_sort'
)
sorted_df = st.session_state.leaderboard_df.sort_values(by=sort_col, ascending=False)
st.dataframe(
style_dataframe(sorted_df),
use_container_width=True,
height=400
)
# Category performance bar plot
metrics = ['F1 Score', 'Precision', 'Recall']
selected_metric = st.selectbox("Select Metric for Category Analysis:", metrics)
category_data = st.session_state.combined_df[
st.session_state.combined_df['Class'].str.contains('Overall')
]
fig = px.bar(
category_data,
x='Category',
y=selected_metric,
color='Model',
barmode='group',
title=f'Category-level {selected_metric} by Model',
)
fig.update_layout(
xaxis_title="Category",
yaxis_title=selected_metric,
legend_title="Model"
)
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.subheader("Category-level Analysis")
categories = st.session_state.combined_df['Category'].unique()
selected_category = st.selectbox("Select Category:", categories)
col1, col2 = st.columns(2)
with col1:
category_data = st.session_state.combined_df[
st.session_state.combined_df['Class'].str.contains('Overall')
]
fig = px.bar(
category_data,
x='Category',
y=selected_metric,
color='Model',
barmode='group',
title=f'{selected_metric} by Category'
)
st.plotly_chart(fig, use_container_width=True)
with col2:
cat_data = st.session_state.combined_df[
(st.session_state.combined_df['Category'] == selected_category) &
(~st.session_state.combined_df['Class'].str.contains('Overall'))
]
fig = go.Figure()
for model in cat_data['Model'].unique():
model_data = cat_data[cat_data['Model'] == model]
fig.add_trace(go.Scatterpolar(
r=model_data[selected_metric],
theta=model_data['Class'],
name=model,
fill='toself'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
showlegend=True,
title=f'{selected_metric} Distribution for {selected_category}'
)
st.plotly_chart(fig, use_container_width=True)
with tab3:
st.subheader("Class-level Performance")
col1, col2, col3 = st.columns(3)
with col1:
selected_category = st.selectbox(
"Select Category:",
categories,
key='class_category'
)
with col2:
selected_metric = st.selectbox(
"Select Metric:",
metrics,
key='class_metric'
)
with col3:
selected_models = st.multiselect(
"Select Models:",
st.session_state.combined_df['Model'].unique(),
default=st.session_state.combined_df['Model'].unique()
)
class_data = st.session_state.combined_df[
(st.session_state.combined_df['Category'] == selected_category) &
(~st.session_state.combined_df['Class'].str.contains('Overall')) &
(st.session_state.combined_df['Model'].isin(selected_models))
]
fig = px.bar(
class_data,
x='Class',
y=selected_metric,
color='Model',
barmode='group',
title=f'{selected_metric} by Class for {selected_category}'
)
st.plotly_chart(fig, use_container_width=True)
fig = px.scatter(
class_data,
x='Precision',
y='Recall',
color='Model',
size='Support',
hover_data=['Class'],
title=f'Precision vs Recall for {selected_category}'
)
fig.update_traces(marker=dict(sizeref=2.*max(class_data['Support'])/40.**2))
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.subheader("Detailed Metrics Analysis")
selected_model = st.selectbox(
"Select Model for Detailed Analysis:",
st.session_state.combined_df['Model'].unique()
)
model_data = st.session_state.combined_df[
st.session_state.combined_df['Model'] == selected_model
]
st.markdown("### Detailed Metrics Table")
detailed_metrics = model_data.pivot_table(
index='Category',
columns='Class',
values=['F1 Score', 'Precision', 'Recall']
).round(4)
st.dataframe(style_dataframe(detailed_metrics), use_container_width=True)
csv = detailed_metrics.to_csv().encode()
st.download_button(
"Download Detailed Metrics",
csv,
f"detailed_metrics_{selected_model}.csv",
"text/csv",
key='download-csv'
)
st.markdown("---")
st.markdown("Dashboard created for model evaluation and comparison.") |