Spaces:
Running
Running
File size: 1,247 Bytes
d9e0a75 614cd1a d9e0a75 614cd1a d9e0a75 ed39965 614cd1a ed39965 00f1f50 ed39965 d974702 2030f34 614cd1a ed39965 614cd1a ed39965 614cd1a 23ad6d7 614cd1a 23ad6d7 614cd1a b22eea8 37275b7 fd8d93f 614cd1a 1d6f7dd fdfd978 1d6f7dd 1e3a7ab 1d6f7dd 614cd1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
title: README
emoji: π
colorFrom: pink
colorTo: blue
sdk: static
pinned: false
---
**Name of the Project: News and Social Media Biases**
**Project Lead: Shaina Raza**
**Team Members: Nifemi Bamgbose Mizanur Rahman, Shardul Ghuge, Farnaz Kohankhaki, Drai Paulen-Patterson, Yan Sidyakin, Veronica Chatrath**
**Location**: Canada
**Type of Project**: (Research Project / Application Development / Non-Profit Initiative)
**Established**: 2023
**Mission**: To detect and debias media biases using advanced NLP techniques
**Hugging Face Tools Used**:
- **Transformers Library**: To use pre-trained models like BERT, RoBERTa, Llama2 etc., for bias detection.
- **Datasets Library**: A collection of NLP datasets that can be useful in understanding and detecting biases in different media outlets.
- **Inference API**: For deploying the bias detection models in real-world applications.
**See package** https://pypi.org/project/UnBIAS/
**Contact Information**: [email protected]
## References
If you use our work, please cite this page:
```bibtex
@misc{raza2023newsmediabias,
Author = {Shaina Raza},
title = {News Media Bias},
year = {2023},
url = {https://huggingface.co/newsmediabias},
}
```
|