testgen / app.py
nevreal's picture
Update app.py
78f6a44 verified
raw
history blame
2.66 kB
import gradio as gr
from diffusers import StableDiffusionPipeline, DiffusionPipeline
import torch
# Function to automatically switch between GPU and CPU
def load_model(base_model_id, adapter_model_id):
device = "cuda" if torch.cuda.is_available() else "cpu"
info = f"Running on {'GPU (CUDA) 🔥' if device == 'cuda' else 'CPU 🥶'}"
try:
# Load the base model dynamically on the correct device
pipe = StableDiffusionPipeline.from_pretrained(
base_model_id,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device)
# If an adapter model is provided, load and merge the adapter model
if adapter_model_id:
adapter_pipe = DiffusionPipeline.from_pretrained(adapter_model_id)
adapter_pipe.load_lora_weights(base_model_id)
pipe = pipe.to(device)
return pipe, info
except Exception as e:
return None, f"Error loading model: {str(e)}"
# Function for text-to-image generation
def generate_image(base_model_id, adapter_model_id, prompt):
pipe, info = load_model(base_model_id, adapter_model_id)
if pipe is None:
return None, info
# Generate image based on the prompt
try:
image = pipe(prompt).images[0]
return image, info
except Exception as e:
return None, f"Error generating image: {str(e)}"
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Custom Text-to-Image Generator with Adapter Support")
with gr.Row():
with gr.Column():
base_model_id = gr.Textbox(
label="Enter Base Model ID (e.g., CompVis/stable-diffusion-v1-4)",
placeholder="Base Model ID"
)
adapter_model_id = gr.Textbox(
label="Enter Adapter Model ID (optional, e.g., nevreal/vMurderDrones-Lora)",
placeholder="Adapter Model ID (optional)",
value=""
)
prompt = gr.Textbox(
label="Enter your prompt",
placeholder="Describe the image you want to generate"
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image")
device_info = gr.Markdown() # To display device info and any error messages
# Link the button to the image generation function
generate_btn.click(
fn=generate_image,
inputs=[base_model_id, adapter_model_id, prompt],
outputs=[output_image, device_info]
)
# Launch the app
demo.launch()