File size: 3,028 Bytes
3331823
f4bd310
3331823
 
 
 
 
 
f4bd310
 
 
 
 
 
 
 
 
 
 
 
 
 
3331823
 
f4bd310
 
 
 
 
 
 
 
 
3331823
 
f4bd310
 
 
 
 
 
 
 
 
 
3331823
 
 
 
 
 
 
 
 
 
 
 
 
f4bd310
3331823
 
 
f4bd310
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import whisper
import yt_dlp
import gradio as gr
import os
import re

model = whisper.load_model("base")

def get_audio(url):
    try:
        ydl_opts = {
            'format': 'bestaudio/best',
            'outtmpl': '%(id)s.%(ext)s',
            'noplaylist': True,
            'quiet': True
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=True)
            audio_file = os.path.join(ydl.outtmpl % info)
            return audio_file
    except Exception as e:
        raise gr.Error(f"Exception: {e}")

def get_text(url):
    try:
        if url != '':
            audio_file = get_audio(url)
            result = model.transcribe(audio_file)
            return result['text'].strip()
        else:
            return "Please enter a YouTube video URL."
    except Exception as e:
        raise gr.Error(f"Exception: {e}")

def get_summary(article):
    try:
        first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
        # Assuming you have a summarizer pipeline set up
        # b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False)
        # b = b[0]['summary_text'].replace(' .', '.').strip()
        # return b
        # Since no summarizer is defined, return the first sentences for now
        return first_sentences
    except Exception as e:
        raise gr.Error(f"Exception: {e}")

with gr.Blocks() as demo:
    gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
    #gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>")
    gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video.</center>")
    gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
    gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
    
    input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL')
    result_button_transcribe = gr.Button('1. Transcribe')
    output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
    #result_button_summary = gr.Button('2. Create Summary')
    #output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')

    result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe)
    #result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary)

    demo.queue(default_enabled = True).launch(debug = True)