neuralworm's picture
update app.py
bd61488
raw
history blame
6.01 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
import io
import base64
model_name = "EleutherAI/gpt-neo-1.3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_tokens = 900
max_gen_length = 100
debug_log = []
def debug(msg):
print(msg)
debug_log.append(str(msg))
def trim_prompt(prompt, max_tokens=max_tokens):
tokens = tokenizer.encode(prompt, add_special_tokens=False)
if len(tokens) > max_tokens:
debug(f"[!] Trimming prompt from {len(tokens)} to {max_tokens} tokens.")
tokens = tokens[-max_tokens:]
return tokenizer.decode(tokens)
def generate_response(prompt):
prompt = trim_prompt(prompt)
debug(f"Generating response for prompt:\n{prompt}")
inputs = tokenizer(prompt, return_tensors="pt").to(device)
try:
outputs = model.generate(
**inputs,
max_length=min(len(inputs["input_ids"][0]) + max_gen_length, 1024),
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.9,
top_p=0.95,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
debug(f"Response:\n{result}")
return result
except Exception as e:
debug(f"Error during generation: {e}")
return "[Generation failed]"
def similarity(a, b):
if not a.strip() or not b.strip():
return 0.0
tok_a = tokenizer(a, return_tensors="pt").to(device)
tok_b = tokenizer(b, return_tensors="pt").to(device)
with torch.no_grad():
emb_a = model.transformer.wte(tok_a.input_ids).mean(dim=1)
emb_b = model.transformer.wte(tok_b.input_ids).mean(dim=1)
return float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0])
def make_heatmap(matrix, title):
fig, ax = plt.subplots(figsize=(8, 6))
sns.heatmap(matrix, annot=True, cmap="coolwarm", ax=ax)
ax.set_title(title)
buf = io.BytesIO()
plt.tight_layout()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
return base64.b64encode(buf.read()).decode()
def build_similarity_graph(texts):
G = nx.Graph()
for i, text_i in enumerate(texts):
for j, text_j in enumerate(texts):
if i < j:
sim = similarity(text_i, text_j)
if sim > 0.90:
G.add_edge(f'T{i}', f'T{j}', weight=sim)
return G
def get_embeddings(texts):
with torch.no_grad():
embeddings = []
for t in texts:
ids = tokenizer(t, return_tensors='pt', truncation=True).to(device)
emb = model.transformer.wte(ids.input_ids).mean(dim=1)
embeddings.append(emb.cpu().numpy()[0])
return np.array(embeddings)
def cluster_texts(texts, n_clusters=2):
embs = get_embeddings(texts)
kmeans = KMeans(n_clusters=n_clusters)
labels = kmeans.fit_predict(embs)
return labels
def dual_identity_unfolding(n_steps):
I_trace, not_I_trace = [], []
ΔS_I, ΔS_not_I, ΔS_cross = [], [], []
debug_log.clear()
I_state = "The system reflects: 'I am...'"
not_I_state = "Explain why the claim 'I am...' might be false."
for step in range(n_steps):
debug(f"\n=== Step {step} ===")
I_prompt = I_state + "\nElaborate this claim."
not_I_prompt = f"Refute or challenge the claim: \"{I_state}\"\nPresent a fundamental contradiction."
I = generate_response(I_prompt)
not_I = generate_response(not_I_prompt)
I_trace.append(I)
not_I_trace.append(not_I)
I_state = "Earlier it stated: " + I
not_I_state = "Counterclaim to: " + I
if step > 0:
ΔS_I.append(round(similarity(I_trace[-2], I_trace[-1]), 4))
ΔS_not_I.append(round(similarity(not_I_trace[-2], not_I_trace[-1]), 4))
ΔS_cross.append(round(similarity(I_trace[-1], not_I_trace[-1]), 4))
else:
ΔS_I.append(None)
ΔS_not_I.append(None)
ΔS_cross.append(round(similarity(I_trace[-1], not_I_trace[-1]), 4))
all_texts = I_trace + not_I_trace
sim_matrix = np.zeros((len(all_texts), len(all_texts)))
for i in range(len(all_texts)):
for j in range(len(all_texts)):
sim_matrix[i][j] = similarity(all_texts[i], all_texts[j])
heatmap = make_heatmap(sim_matrix, "Similarity Matrix (I ∪ ¬I)")
clusters = cluster_texts(all_texts)
ΔS_out = "\n".join([
f"Step {i}: ΔS(I)={ΔS_I[i]} ΔS(¬I)={ΔS_not_I[i]} ΔS Cross={ΔS_cross[i]}"
for i in range(n_steps)
])
I_out = "\n\n".join([f"I{i} [C{clusters[i]}]: {t}" for i, t in enumerate(I_trace)])
not_I_out = "\n\n".join([f"¬I{i} [C{clusters[len(I_trace)+i]}]: {t}" for i, t in enumerate(not_I_trace)])
debug_output = "\n".join(debug_log)
img_html = f"<img src='data:image/png;base64,{heatmap}'/>"
return I_out, not_I_out, ΔS_out, debug_output, img_html
iface = gr.Interface(
fn=dual_identity_unfolding,
inputs=gr.Slider(2, 10, value=5, step=1, label="Number of Steps"),
outputs=[
gr.Textbox(label="Identity Trace (Iₙ)", lines=15),
gr.Textbox(label="Contradiction Trace (¬Iₙ)", lines=15),
gr.Textbox(label="ΔS Similarity Trace", lines=8),
gr.Textbox(label="Debug Log", lines=10),
gr.HTML(label="Similarity Heatmap")
],
title="GPT Identity Analyzer + Antithesis (EAL Mode)",
description="Analyzes the self-consistency and contradiction emergence in GPT-Neo using EAL-inspired fixed-point tracing, clustering, and cosine similarity."
)
if __name__ == "__main__":
iface.launch()