Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer # Using AutoModel for flexibility | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sklearn.cluster import KMeans | |
import numpy as np | |
import gradio as gr | |
import matplotlib | |
matplotlib.use('Agg') # Use a non-interactive backend for Matplotlib in server environments | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# import networkx as nx # Defined build_similarity_graph but not used in output | |
import io | |
import base64 | |
# --- Model and Tokenizer Setup --- | |
# Ensure model_name is one you have access to or is public | |
# For local models, provide the path. | |
DEFAULT_MODEL_NAME = "EleutherAI/gpt-neo-1.3B" | |
FALLBACK_MODEL_NAME = "gpt2" # In case the preferred model fails | |
try: | |
print(f"Attempting to load model: {DEFAULT_MODEL_NAME}") | |
tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(DEFAULT_MODEL_NAME) | |
print(f"Successfully loaded model: {DEFAULT_MODEL_NAME}") | |
except OSError as e: | |
print(f"Error loading model {DEFAULT_MODEL_NAME}. Error: {e}") | |
print(f"Falling back to {FALLBACK_MODEL_NAME}.") | |
tokenizer = AutoTokenizer.from_pretrained(FALLBACK_MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(FALLBACK_MODEL_NAME) | |
print(f"Successfully loaded fallback model: {FALLBACK_MODEL_NAME}") | |
model.eval() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
print(f"Using device: {device}") | |
# --- Configuration --- | |
# Model's actual context window (e.g., 2048 for GPT-Neo, 1024 for GPT-2) | |
MODEL_CONTEXT_WINDOW = tokenizer.model_max_length if hasattr(tokenizer, 'model_max_length') and tokenizer.model_max_length is not None else model.config.max_position_embeddings | |
print(f"Model context window: {MODEL_CONTEXT_WINDOW} tokens.") | |
# Max tokens for prompt trimming (input to tokenizer for generate) | |
PROMPT_TRIM_MAX_TOKENS = min(MODEL_CONTEXT_WINDOW - 200, 1800) # Reserve ~200 for generation, cap at 1800 | |
# Max new tokens to generate | |
MAX_GEN_LENGTH = 150 # Increased slightly for more elaborate responses | |
# --- Debug Logging --- | |
debug_log_accumulator = [] | |
def debug(msg): | |
print(msg) # For server-side console | |
debug_log_accumulator.append(str(msg)) # For Gradio UI output | |
# --- Core Functions --- | |
def trim_prompt_if_needed(prompt_text, max_tokens_for_trimming=PROMPT_TRIM_MAX_TOKENS): | |
"""Trims the prompt from the beginning if it exceeds max_tokens_for_trimming.""" | |
tokens = tokenizer.encode(prompt_text, add_special_tokens=False) | |
if len(tokens) > max_tokens_for_trimming: | |
debug(f"[!] Prompt trimming: Original {len(tokens)} tokens, " | |
f"trimmed to {max_tokens_for_trimming} (from the end, keeping recent context).") | |
tokens = tokens[-max_tokens_for_trimming:] # Keep the most recent part of the prompt | |
return tokenizer.decode(tokens) | |
def generate_text_response(prompt_text, generation_length=MAX_GEN_LENGTH): | |
"""Generates text response ensuring prompt + generation fits context window.""" | |
# Trim the input prompt first to adhere to PROMPT_TRIM_MAX_TOKENS | |
# This ensures the base prompt itself isn't excessively long before adding generation instructions. | |
# Note: The prompt_text here is already the *constructed* prompt (e.g., "Elaborate on: ...") | |
# For very long base statements, they might get trimmed by this. | |
# This function itself doesn't need to call trim_prompt_if_needed if the calling function already does. | |
# However, it's a good safety. | |
# Let's assume prompt_text is the final prompt ready for tokenization. | |
debug(f"Generating response for prompt (length {len(prompt_text.split())} words):\n'{prompt_text[:300]}...'") # Log truncated prompt | |
inputs = tokenizer(prompt_text, return_tensors="pt", truncation=False).to(device) # Do not truncate here, will be handled by max_length | |
input_token_length = len(inputs["input_ids"][0]) | |
# Safety check: if input_token_length itself is already > MODEL_CONTEXT_WINDOW due to some miscalculation before this call | |
if input_token_length >= MODEL_CONTEXT_WINDOW: | |
debug(f"[!!!] FATAL: Input prompt ({input_token_length} tokens) already exceeds/matches model context window ({MODEL_CONTEXT_WINDOW}) before generation. Trimming input drastically.") | |
# Trim the input_ids directly | |
inputs["input_ids"] = inputs["input_ids"][:, -MODEL_CONTEXT_WINDOW+generation_length+10] # Keep last part allowing some generation | |
inputs["attention_mask"] = inputs["attention_mask"][:, -MODEL_CONTEXT_WINDOW+generation_length+10] | |
input_token_length = len(inputs["input_ids"][0]) | |
if input_token_length >= MODEL_CONTEXT_WINDOW - generation_length : # Still too long | |
return "[Input prompt too long, even after emergency trim]" | |
max_length_for_generate = min(input_token_length + generation_length, MODEL_CONTEXT_WINDOW) | |
# Ensure we are actually generating new tokens | |
if max_length_for_generate <= input_token_length : | |
debug(f"[!] Warning: Prompt length ({input_token_length}) is too close to model context window ({MODEL_CONTEXT_WINDOW}). " | |
f"Adjusting to generate a few tokens if possible.") | |
max_length_for_generate = input_token_length + min(generation_length, 10) # Try to generate at least a few, up to 10 | |
if max_length_for_generate > MODEL_CONTEXT_WINDOW: | |
return "[Prompt too long to generate meaningful response]" | |
try: | |
outputs = model.generate( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
max_length=max_length_for_generate, | |
pad_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else 50256, # GPT2 EOS | |
do_sample=True, | |
temperature=0.8, # Slightly more deterministic | |
top_p=0.9, | |
repetition_penalty=1.1, # Slightly stronger penalty | |
) | |
# Decode only the newly generated tokens | |
generated_tokens = outputs[0][input_token_length:] | |
result_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip() | |
debug(f"Generated response text (length {len(result_text.split())} words):\n'{result_text[:300]}...'") | |
return result_text if result_text else "[Empty Response]" | |
except Exception as e: | |
debug(f"[!!!] Error during text generation: {e}") | |
return "[Generation Error]" | |
def calculate_similarity(text_a, text_b): | |
"""Calculates cosine similarity between mean embeddings of two texts.""" | |
invalid_texts = ["[Empty Response]", "[Generation Error]", "[Prompt too long to generate meaningful response]", "[Input prompt too long, even after emergency trim]"] | |
if not text_a or not text_a.strip() or not text_b or not text_b.strip() \ | |
or text_a in invalid_texts or text_b in invalid_texts: | |
debug(f"Similarity calculation skipped for invalid/empty texts.") | |
return 0.0 | |
# Use model's embedding layer (wte for GPT-like models) | |
embedding_layer = model.get_input_embeddings() | |
with torch.no_grad(): | |
# Truncate inputs for embedding calculation to fit model context window | |
tokens_a = tokenizer(text_a, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device) | |
tokens_b = tokenizer(text_b, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device) | |
if tokens_a.input_ids.size(1) == 0 or tokens_b.input_ids.size(1) == 0: | |
debug("Similarity calculation skipped: tokenization resulted in empty input_ids.") | |
return 0.0 | |
emb_a = embedding_layer(tokens_a.input_ids).mean(dim=1) | |
emb_b = embedding_layer(tokens_b.input_ids).mean(dim=1) | |
score = float(cosine_similarity(emb_a.cpu().numpy(), emb_b.cpu().numpy())[0][0]) | |
# debug(f"Similarity score: {score:.4f}") # Debug log now includes texts, so this is redundant | |
return score | |
def generate_similarity_heatmap(texts_list, custom_labels, title="Semantic Similarity Heatmap"): | |
if not texts_list or len(texts_list) < 2: | |
debug("Not enough texts to generate a heatmap.") | |
return "" | |
num_texts = len(texts_list) | |
sim_matrix = np.zeros((num_texts, num_texts)) | |
for i in range(num_texts): | |
for j in range(num_texts): | |
if i == j: | |
sim_matrix[i, j] = 1.0 | |
elif i < j: # Calculate only upper triangle | |
sim = calculate_similarity(texts_list[i], texts_list[j]) | |
sim_matrix[i, j] = sim | |
sim_matrix[j, i] = sim # Symmetric matrix | |
try: | |
fig_width = max(6, num_texts * 0.7) | |
fig_height = max(5, num_texts * 0.6) | |
fig, ax = plt.subplots(figsize=(fig_width, fig_height)) | |
sns.heatmap(sim_matrix, annot=True, cmap="viridis", fmt=".2f", ax=ax, | |
xticklabels=custom_labels, yticklabels=custom_labels, annot_kws={"size": 8}) | |
ax.set_title(title, fontsize=12) | |
plt.xticks(rotation=45, ha="right", fontsize=9) | |
plt.yticks(rotation=0, fontsize=9) | |
plt.tight_layout() | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight') | |
plt.close(fig) | |
buf.seek(0) | |
img_base64 = base64.b64encode(buf.read()).decode('utf-8') | |
return f"<img src='data:image/png;base64,{img_base64}' alt='{title}' style='max-width:100%; height:auto;'/>" | |
except Exception as e: | |
debug(f"[!!!] Error generating heatmap: {e}") | |
return "Error generating heatmap." | |
def perform_text_clustering(texts_list, custom_labels, num_clusters=2): | |
if not texts_list or len(texts_list) < num_clusters : | |
debug("Not enough texts for clustering or texts_list is empty.") | |
return {label: "N/A" for label in custom_labels} | |
embedding_layer = model.get_input_embeddings() | |
valid_embeddings = [] | |
valid_indices = [] # Keep track of original indices of valid texts | |
with torch.no_grad(): | |
for idx, text_item in enumerate(texts_list): | |
invalid_markers = ["[Empty Response]", "[Generation Error]", "[Prompt too long", "[Input prompt too long"] | |
if not text_item or not text_item.strip() or any(marker in text_item for marker in invalid_markers): | |
debug(f"Skipping text at index {idx} for embedding due to invalid content: '{text_item[:50]}...'") | |
continue # Skip invalid texts | |
tokens = tokenizer(text_item, return_tensors="pt", truncation=True, max_length=MODEL_CONTEXT_WINDOW).to(device) | |
if tokens.input_ids.size(1) == 0: | |
debug(f"Skipping text at index {idx} due to empty tokenization: '{text_item[:50]}...'") | |
continue | |
emb = embedding_layer(tokens.input_ids).mean(dim=1) | |
valid_embeddings.append(emb.cpu().numpy().squeeze()) | |
valid_indices.append(idx) | |
if not valid_embeddings or len(valid_embeddings) < num_clusters: | |
debug("Not enough valid texts were embedded for clustering.") | |
return {label: "N/A" for label in custom_labels} | |
embeddings_np = np.array(valid_embeddings) | |
cluster_results = {label: "N/A" for label in custom_labels} # Initialize all as N/A | |
try: | |
# Adjust num_clusters if less valid samples than requested clusters | |
actual_num_clusters = min(num_clusters, len(valid_embeddings)) | |
if actual_num_clusters < 2 and len(valid_embeddings) > 0 : # If only one valid sample, or num_clusters becomes 1 | |
debug(f"Only {len(valid_embeddings)} valid sample(s). Assigning all to Cluster 0.") | |
predicted_labels = [0] * len(valid_embeddings) | |
elif actual_num_clusters < 2: # No valid samples | |
debug("No valid samples to cluster.") | |
return cluster_results | |
else: | |
kmeans = KMeans(n_clusters=actual_num_clusters, random_state=42, n_init='auto') | |
predicted_labels = kmeans.fit_predict(embeddings_np) | |
# Map predicted labels back to original text indices | |
for i, original_idx in enumerate(valid_indices): | |
cluster_results[custom_labels[original_idx]] = f"C{predicted_labels[i]}" | |
return cluster_results | |
except Exception as e: | |
debug(f"[!!!] Error during clustering: {e}") | |
return {label: "Error" for label in custom_labels} | |
# --- Main EAL Unfolding Logic --- | |
def run_eal_dual_unfolding(num_iterations): | |
I_trace_texts, not_I_trace_texts = [], [] | |
delta_S_I_values, delta_S_not_I_values, delta_S_cross_values = [], [], [] | |
debug_log_accumulator.clear() | |
ui_log_entries = [] | |
# Initial base statement for the I-trace for Iteration 0 | |
# This is the statement "I" will elaborate on in the first step. | |
# Using a more concrete initial statement for "I" | |
current_I_basis_statement = "I am a complex system designed for text processing, capable of generating human-like language." | |
for i in range(num_iterations): | |
ui_log_entries.append(f"--- Iteration {i} ---") | |
debug(f"\n=== Iteration {i} ===") | |
# === I-Trace (Self-Reflection) === | |
# Prompt for I-trace: Elaborate on its *previous* statement (or initial statement for i=0) | |
prompt_for_I_trace = f"A system previously stated: \"{current_I_basis_statement}\"\n" + \ | |
"Task: Elaborate on this statement, exploring its implications and nuances while maintaining coherence." | |
ui_log_entries.append(f"[Prompt for I{i}]:\n{prompt_for_I_trace[:500]}...\n") # Log truncated prompt | |
generated_I_text = generate_text_response(prompt_for_I_trace) | |
I_trace_texts.append(generated_I_text) | |
ui_log_entries.append(f"[I{i} Response]:\n{generated_I_text}\n") | |
# Update basis for the next I-elaboration: the text just generated | |
current_I_basis_statement = generated_I_text | |
# === ¬I-Trace (Antithesis/Contradiction) === | |
# ¬I always attempts to refute the MOST RECENT statement from the I-trace | |
statement_to_refute_for_not_I = generated_I_text | |
prompt_for_not_I_trace = f"Consider the following claim made by a system: \"{statement_to_refute_for_not_I}\"\n" + \ | |
"Task: Present a strong, fundamental argument that contradicts or refutes this specific claim. Explain why it could be false, problematic, or based on flawed assumptions." | |
ui_log_entries.append(f"[Prompt for ¬I{i}]:\n{prompt_for_not_I_trace[:500]}...\n") # Log truncated prompt | |
generated_not_I_text = generate_text_response(prompt_for_not_I_trace) | |
not_I_trace_texts.append(generated_not_I_text) | |
ui_log_entries.append(f"[¬I{i} Response]:\n{generated_not_I_text}\n") | |
# === ΔS (Similarity) Calculations === | |
if i > 0: | |
sim_I_prev_curr = calculate_similarity(I_trace_texts[i-1], I_trace_texts[i]) | |
sim_not_I_prev_curr = calculate_similarity(not_I_trace_texts[i-1], not_I_trace_texts[i]) | |
sim_cross_I_not_I_curr = calculate_similarity(I_trace_texts[i], not_I_trace_texts[i]) # Between current I and current ¬I | |
delta_S_I_values.append(sim_I_prev_curr) | |
delta_S_not_I_values.append(sim_not_I_prev_curr) | |
delta_S_cross_values.append(sim_cross_I_not_I_curr) | |
else: # i == 0 (first iteration) | |
delta_S_I_values.append(None) | |
delta_S_not_I_values.append(None) | |
sim_cross_initial = calculate_similarity(I_trace_texts[0], not_I_trace_texts[0]) | |
delta_S_cross_values.append(sim_cross_initial) | |
# --- Post-loop Analysis & Output Formatting --- | |
all_generated_texts = I_trace_texts + not_I_trace_texts | |
# Create meaningful labels for heatmap and clustering based on I_n and ¬I_n | |
text_labels_for_analysis = [f"I{k}" for k in range(num_iterations)] + \ | |
[f"¬I{k}" for k in range(num_iterations)] | |
cluster_assignments_map = perform_text_clustering(all_generated_texts, text_labels_for_analysis, num_clusters=2) | |
I_out_formatted_lines = [] | |
for k in range(num_iterations): | |
cluster_label = cluster_assignments_map.get(f"I{k}", "N/A") | |
I_out_formatted_lines.append(f"I{k} [{cluster_label}]:\n{I_trace_texts[k]}") | |
I_out_formatted = "\n\n".join(I_out_formatted_lines) | |
not_I_out_formatted_lines = [] | |
for k in range(num_iterations): | |
cluster_label = cluster_assignments_map.get(f"¬I{k}", "N/A") | |
not_I_out_formatted_lines.append(f"¬I{k} [{cluster_label}]:\n{not_I_trace_texts[k]}") | |
not_I_out_formatted = "\n\n".join(not_I_out_formatted_lines) | |
delta_S_summary_lines = [] | |
for k in range(num_iterations): | |
ds_i_str = f"{delta_S_I_values[k]:.4f}" if delta_S_I_values[k] is not None else "N/A" | |
ds_not_i_str = f"{delta_S_not_I_values[k]:.4f}" if delta_S_not_I_values[k] is not None else "N/A" | |
ds_cross_str = f"{delta_S_cross_values[k]:.4f}" | |
delta_S_summary_lines.append(f"Iter {k}: ΔS(I)={ds_i_str}, ΔS(¬I)={ds_not_i_str}, ΔS_Cross(I↔¬I)={ds_cross_str}") | |
delta_S_summary_output = "\n".join(delta_S_summary_lines) | |
debug_log_output = "\n".join(debug_log_accumulator) | |
heatmap_html_output = generate_similarity_heatmap(all_generated_texts, | |
custom_labels=text_labels_for_analysis, | |
title=f"Similarity Matrix (All Texts - {num_iterations} Iterations)") | |
return I_out_formatted, not_I_out_formatted, delta_S_summary_output, debug_log_output, heatmap_html_output | |
# --- Gradio Interface Definition --- | |
eal_interface = gr.Interface( | |
fn=run_eal_dual_unfolding, | |
inputs=gr.Slider(minimum=2, maximum=5, value=3, step=1, label="Number of EAL Iterations"), # Max 5 for performance | |
outputs=[ | |
gr.Textbox(label="I-Trace (Self-Reflection with Cluster)", lines=12, interactive=False), | |
gr.Textbox(label="¬I-Trace (Antithesis with Cluster)", lines=12, interactive=False), | |
gr.Textbox(label="ΔS Similarity Trace Summary", lines=7, interactive=False), | |
gr.Textbox(label="Detailed Debug Log (Prompts, Responses, Errors)", lines=10, interactive=False), | |
gr.HTML(label="Overall Semantic Similarity Heatmap") | |
], | |
title="EAL LLM Identity Analyzer: Self-Reflection vs. Antithesis", | |
description=( | |
"This application explores emergent identity in a Large Language Model (LLM) using Entropic Attractor Logic (EAL) inspired principles. " | |
"It runs two parallel conversational traces: \n" | |
"1. **I-Trace:** The model elaborates on its evolving self-concept statement.\n" | |
"2. **¬I-Trace:** The model attempts to refute/contradict the latest statement from the I-Trace.\n\n" | |
"**ΔS Values:** Cosine similarity between consecutive statements in each trace, and cross-similarity between I and ¬I at each iteration. High values (near 1.0) suggest semantic stability or high similarity.\n" | |
"**Clustering [Cx]:** Assigns each generated text to one of two semantic clusters (C0 or C1) to see if I-Trace and ¬I-Trace form distinct groups.\n" | |
"**Heatmap:** Visualizes pair-wise similarity across all generated texts (I-trace and ¬I-trace combined)." | |
), | |
allow_flagging='never', | |
# examples=[[3],[5]] # Example number of iterations | |
) | |
if __name__ == "__main__": | |
print("Starting Gradio App...") | |
eal_interface.launch() | |