Spaces:
Running
Running
File size: 6,356 Bytes
362883d b1dbb4f 362883d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import io
import requests
from uuid import uuid4
import boto3
from botocore.client import Config
from PIL import Image
import gradio as gr
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
MAX_PIXEL_BUDGET = 1024 * 1024
def upload_to_r2(file_path, object_key, content_type):
s3 = boto3.client(
's3',
endpoint_url=os.getenv('R2_ENDPOINT'),
aws_access_key_id=os.getenv('R2_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('R2_SECRET_ACCESS_KEY'),
config=Config(signature_version='s3v4'),
region_name='auto'
)
with open(file_path, 'rb') as f:
s3.put_object(
Bucket=os.getenv('R2_BUCKET'),
Key=object_key,
Body=f,
ContentType=content_type
)
download_url = s3.generate_presigned_url(
'get_object',
Params={
'Bucket': os.getenv('R2_BUCKET'),
'Key': object_key
},
ExpiresIn=3600 # url expiration time in seconds
)
return download_url
def process_input(input_image, upscale_factor):
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
was_resized = False
# compute minimum dimension after upscaling
min_dimension = min(w, h) * upscale_factor
# if minimum dimension is above 1024, adjust scale factor
if min_dimension > 1024:
new_scale = 1024 / min(w, h)
upscale_factor = min(2, new_scale) # cap at 2x if needed
gr.Info(f'Adjusted scale factor to {upscale_factor}x to maintain minimum dimension of 1024 pixels')
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
gr.Info(
f'Requested output image is too large. Resizing input to fit within pixel budget.'
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
return input_image, w_original, h_original, was_resized, upscale_factor
def infer(
input_image,
upscale_factor,
image_category,
):
true_input_image = input_image
input_image, w_original, h_original, was_resized, adjusted_scale = process_input(
input_image, upscale_factor
)
temp_input_path = 'temp_input.png'
input_image.save(temp_input_path)
image_url = upload_to_r2(temp_input_path, str(uuid4()), 'image/png')
gr.Info('Upscaling image...')
try:
resp = requests.get(
os.getenv('ENDPOINT') ,
headers={
'Modal-Key': os.getenv('AUTH_KEY'),
'Modal-Secret': os.getenv('AUTH_SECRET'),
},
params={
'image_url': image_url,
'image_category': image_category,
'scale_factor': adjusted_scale,
'output_format': 'png',
'upload_to_r2': False
}
)
if resp.status_code != 200:
raise gr.Error(f'API request failed with status {resp.status_code}: {resp.text}')
# save the response image
output_path = 'output.png'
with open(output_path, 'wb') as f:
f.write(resp.content)
output_image = Image.open(output_path)
if was_resized:
gr.Info(
f'Resizing output image to targeted {w_original * adjusted_scale}x{h_original * adjusted_scale} size.'
)
output_image = output_image.resize((int(w_original * adjusted_scale), int(h_original * adjusted_scale)))
return output_image
except Exception as e:
raise gr.Error(f'Error during upscaling: {str(e)}')
finally:
if os.path.exists(temp_input_path):
os.remove(temp_input_path)
if os.path.exists(output_path):
os.remove(output_path)
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# π Puncta Lite - AI Image Upscaler
This is a lite version of Puncta's AI image upscaler. For more advanced features and higher quality results, visit [puncta.ai](https://www.puncta.ai/).
*Note*: This demo is limited to a maximum output resolution of 1024x1024 pixels. For higher resolution upscaling, please visit our full version at puncta.ai.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_im = gr.Image(label='Input Image', type='pil')
with gr.Column(scale=1):
output_im = gr.Image(label='Output Image', type='pil')
with gr.Row():
with gr.Column(scale=1):
upscale_factor = gr.Slider(
label='Upscale Factor',
minimum=2,
maximum=4,
step=1,
value=2,
)
with gr.Column(scale=1):
image_category = gr.Dropdown(
label='Image Category',
choices=['general', 'portrait', 'outdoor', 'digital art'],
value='general'
)
with gr.Row():
run_button = gr.Button(value='Upscale Image')
examples = gr.Examples(
examples=[
['examples/dogs.jpg', 2, 'outdoor'],
['examples/portrait1.png', 3, 'portrait'],
['examples/anime_1.png', 2, 'digital art'],
['examples/vintage_family_photo.jpg', 2, 'portrait'],
['examples/bus1.png', 3, 'general'],
['examples/festival_3.png', 2, 'general'],
['examples/general_2.png', 2, 'general'],
['examples/anime_2.jpg', 3, 'digital art'],
],
inputs=[
input_im,
upscale_factor,
image_category,
],
fn=infer,
outputs=output_im,
cache_examples=True,
)
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is for testing purposes only. For commercial use and higher quality results, please visit [puncta.ai](https://www.puncta.ai/)."
)
gr.on(
[run_button.click],
fn=infer,
inputs=[
input_im,
upscale_factor,
image_category,
],
outputs=output_im,
show_api=False,
)
demo.queue().launch(share=False, show_api=False) |