Spaces:
Runtime error
Runtime error
Commit
Β·
6acc3f7
1
Parent(s):
d016b5d
Added app.py & requirements.txt
Browse files- app.py +218 -0
- requirements.txt +11 -0
app.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import json
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
import re
|
| 8 |
+
import random
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoProcessor
|
| 12 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
| 13 |
+
import peft
|
| 14 |
+
from peft import LoraConfig
|
| 15 |
+
from peft import PeftModel
|
| 16 |
+
import whisperx
|
| 17 |
+
import requests
|
| 18 |
+
from io import BytesIO
|
| 19 |
+
|
| 20 |
+
# Check if CUDA is available
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
device = torch.device("cuda")
|
| 23 |
+
print("Using GPU:", torch.cuda.get_device_name(0)) # Print GPU name
|
| 24 |
+
else:
|
| 25 |
+
device = torch.device("cpu")
|
| 26 |
+
print("Using CPU")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
model_name = "microsoft/phi-2"
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
|
| 31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 32 |
+
bos_token_id = tokenizer.bos_token_id
|
| 33 |
+
pad_token_id = tokenizer.bos_token_id
|
| 34 |
+
eos_token_id = tokenizer.bos_token_id
|
| 35 |
+
eoc_string = 'caption image:'
|
| 36 |
+
eoc_tokens = tokenizer.encode(eoc_string)
|
| 37 |
+
eoq_string = 'end of question:'
|
| 38 |
+
eoq_tokens = tokenizer.encode(eoq_string)
|
| 39 |
+
|
| 40 |
+
model_name = "microsoft/phi-2"
|
| 41 |
+
base_model = AutoModelForCausalLM.from_pretrained(model_name,
|
| 42 |
+
low_cpu_mem_usage=True,
|
| 43 |
+
return_dict=True,
|
| 44 |
+
torch_dtype=torch.float16,
|
| 45 |
+
trust_remote_code=True).to(device)
|
| 46 |
+
base_model.resize_token_embeddings(len(tokenizer))
|
| 47 |
+
|
| 48 |
+
user = "anilbhatt1" # put your user name here
|
| 49 |
+
model_name = "phi2-proj-offset-peft-model"
|
| 50 |
+
model_id = f"{user}/{model_name}"
|
| 51 |
+
|
| 52 |
+
# Merging the peft-model(trained adapters) downloaded from HF with base-phi2-model
|
| 53 |
+
merged_phi2 = peft.PeftModel.from_pretrained(base_model, model_id)
|
| 54 |
+
|
| 55 |
+
vision_model_name = 'openai/clip-vit-base-patch32' ## torch.Size([1, 49, 768])
|
| 56 |
+
clip_patches = 49
|
| 57 |
+
clip_processor = CLIPImageProcessor.from_pretrained(vision_model_name)
|
| 58 |
+
clip_model = CLIPVisionModel.from_pretrained(vision_model_name).to(device)
|
| 59 |
+
|
| 60 |
+
class ClipProjectionBlock(nn.Module):
|
| 61 |
+
def __init__(self, channels):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.pre_norm = nn.LayerNorm(channels)
|
| 64 |
+
|
| 65 |
+
self.proj = nn.Sequential(
|
| 66 |
+
nn.Linear(channels, channels),
|
| 67 |
+
nn.GELU(),
|
| 68 |
+
nn.Linear(channels, channels)
|
| 69 |
+
)
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
x = self.pre_norm(x)
|
| 72 |
+
return x + self.proj(x)
|
| 73 |
+
|
| 74 |
+
class Phi2ProjModel(nn.Module):
|
| 75 |
+
def __init__(self, clip_model, clip_processor, proj_model, phi2_model, clip_embed_dim=768, phi2_dim=2560):
|
| 76 |
+
super(Phi2ProjModel, self).__init__()
|
| 77 |
+
self.clip_embed_dim = clip_embed_dim
|
| 78 |
+
self.phi2_dim = phi2_dim
|
| 79 |
+
self.proj_lin_layer = nn.Linear(clip_embed_dim, phi2_dim)
|
| 80 |
+
self.clip_model = clip_model
|
| 81 |
+
self.clip_processor = clip_processor
|
| 82 |
+
self.proj_model = proj_model
|
| 83 |
+
self.phi2_model = phi2_model
|
| 84 |
+
|
| 85 |
+
def forward(self, input_embed):
|
| 86 |
+
max_len = 100
|
| 87 |
+
output = self.phi2_model.generate(inputs_embeds=input_embed,
|
| 88 |
+
max_new_tokens=max_len,
|
| 89 |
+
return_dict_in_generate = True,
|
| 90 |
+
bos_token_id=bos_token_id,
|
| 91 |
+
pad_token_id=bos_token_id,
|
| 92 |
+
eos_token_id=bos_token_id)
|
| 93 |
+
|
| 94 |
+
return output
|
| 95 |
+
|
| 96 |
+
projection_layer = ClipProjectionBlock(2560).to(device)
|
| 97 |
+
|
| 98 |
+
phi2_proj_model = Phi2ProjModel(clip_model, clip_processor, projection_layer, merged_phi2).to(device)
|
| 99 |
+
|
| 100 |
+
phi2_proj_model.proj_lin_layer.load_state_dict(torch.load('./phi2_proj_model_offset_ll.pth'))
|
| 101 |
+
phi2_proj_model.proj_model.load_state_dict(torch.load('./phi2_proj_model_offset_projmodel.pth'))
|
| 102 |
+
|
| 103 |
+
audio_model = whisperx.load_model("small", "cuda", compute_type="float16")
|
| 104 |
+
|
| 105 |
+
def prepare_input_embed(img=None, audio=None, text=None):
|
| 106 |
+
|
| 107 |
+
input_embed_exists = 0
|
| 108 |
+
|
| 109 |
+
inputs_given = []
|
| 110 |
+
|
| 111 |
+
if img is not None:
|
| 112 |
+
inputs = clip_processor(images=img, return_tensors="pt").to(device)
|
| 113 |
+
clip_output = clip_model(**inputs, output_hidden_states=True) # B, 50, 768
|
| 114 |
+
clip_embeddings = clip_output.last_hidden_state[:,1:, :] # B, 49, 768
|
| 115 |
+
image_embed = phi2_proj_model.proj_lin_layer(clip_embeddings) # B, 49, 2560
|
| 116 |
+
image_embed = phi2_proj_model.proj_model(image_embed) # B, 49, 2560
|
| 117 |
+
B, _, C = image_embed.shape
|
| 118 |
+
|
| 119 |
+
eoc_tkn_tensor = torch.tensor(eoc_tokens, dtype=torch.int64).to(device) # [4] -> EOI token matrix
|
| 120 |
+
eoc_tensor = eoc_tkn_tensor.repeat(B, 1) # [B, 4]
|
| 121 |
+
eoc_embed = phi2_proj_model.phi2_model.base_model.model.model.embed_tokens(eoc_tensor) # B, 4, 2560 -> EOI embeddings (torch.float32)
|
| 122 |
+
|
| 123 |
+
input_image_embed = torch.cat([image_embed, eoc_embed], dim=1) #B, 53, 2560 -> Adding EOI embeddings to indicate end of image
|
| 124 |
+
input_image_embed = input_image_embed.to(dtype=torch.float16)
|
| 125 |
+
|
| 126 |
+
if audio is not None:
|
| 127 |
+
audio_tkn_tensor = torch.tensor(audio, dtype=torch.int64).to(device) # [4] -> EOI token matrix
|
| 128 |
+
audio_tkn_tensor = audio_tkn_tensor.unsqueeze(0)
|
| 129 |
+
audio_embed = phi2_proj_model.phi2_model.base_model.model.model.embed_tokens(audio_tkn_tensor)
|
| 130 |
+
|
| 131 |
+
if text is not None:
|
| 132 |
+
text_tkn_tensor = torch.tensor(text, dtype=torch.int64).to(device) # [4] -> EOI token matrix
|
| 133 |
+
text_tkn_tensor = text_tkn_tensor.unsqueeze(0)
|
| 134 |
+
text_embed = phi2_proj_model.phi2_model.base_model.model.model.embed_tokens(text_tkn_tensor)
|
| 135 |
+
|
| 136 |
+
# If image is present, it gets 1st place in input_embed
|
| 137 |
+
if img is not None:
|
| 138 |
+
input_embed = input_image_embed
|
| 139 |
+
input_embed_exists = 1
|
| 140 |
+
|
| 141 |
+
if audio is not None:
|
| 142 |
+
# If input_embed is already present, that means image was present. So, append audio_embed to it
|
| 143 |
+
if input_embed_exists:
|
| 144 |
+
input_embed = torch.cat([input_embed, audio_embed], dim=1)
|
| 145 |
+
# If input_embed is not there, that means image is not there. So, give audio_embed as input_embed
|
| 146 |
+
else:
|
| 147 |
+
input_embed = audio_embed
|
| 148 |
+
input_embed_exists = 1
|
| 149 |
+
inputs_given.append(audio)
|
| 150 |
+
|
| 151 |
+
if text:
|
| 152 |
+
# If input_embed is already present, that means image/audio are present. So, append text_embed to it
|
| 153 |
+
if input_embed_exists:
|
| 154 |
+
if audio is not None:
|
| 155 |
+
input_embed = torch.cat([input_embed, text_embed], dim=1)
|
| 156 |
+
else:
|
| 157 |
+
input_embed = torch.cat([input_embed, text_embed], dim=1)
|
| 158 |
+
# If input_embed is not there, that means neither image not audio there. So, give text_embed as input_embed
|
| 159 |
+
else:
|
| 160 |
+
input_embed = text_embed
|
| 161 |
+
input_embed_exists = 1
|
| 162 |
+
inputs_given.append(text)
|
| 163 |
+
|
| 164 |
+
inputs_given.append(eoq_tokens)
|
| 165 |
+
|
| 166 |
+
eoq_tkn_tensor = torch.tensor(eoq_tokens, dtype=torch.int64).to(device) # [4] -> EOI token matrix
|
| 167 |
+
B = 1
|
| 168 |
+
eoq_tensor = eoq_tkn_tensor.repeat(B, 1) # [B, 4]
|
| 169 |
+
eoq_embed = phi2_proj_model.phi2_model.base_model.model.model.embed_tokens(eoq_tensor) # B, 4, 2560 -> EOI embeddings (torch.float32)
|
| 170 |
+
input_embed = torch.cat([input_embed, eoq_embed], dim=1)
|
| 171 |
+
|
| 172 |
+
return input_embed
|
| 173 |
+
|
| 174 |
+
def gradio_get_answers_fn(image=None, audio=None, text=None):
|
| 175 |
+
audio_tokens = None
|
| 176 |
+
text_tokens = None
|
| 177 |
+
if audio:
|
| 178 |
+
audio_result = audio_model.transcribe(audio)
|
| 179 |
+
audio_text = ''
|
| 180 |
+
for seg in audio_result['segments']:
|
| 181 |
+
audio_text += seg['text']
|
| 182 |
+
audio_text = audio_text.strip()
|
| 183 |
+
audio_tokens = tokenizer.encode(audio_text)
|
| 184 |
+
|
| 185 |
+
if text:
|
| 186 |
+
text_tokens = tokenizer.encode(text)
|
| 187 |
+
|
| 188 |
+
if image or audio or text:
|
| 189 |
+
input_embed = prepare_input_embed(image, audio_tokens, text_tokens)
|
| 190 |
+
with torch.no_grad():
|
| 191 |
+
output = phi2_proj_model(input_embed)
|
| 192 |
+
out_text = tokenizer.batch_decode(output.sequences[:, 1:])[0]
|
| 193 |
+
out_text = out_text.replace("<|endoftext|>", "")
|
| 194 |
+
else:
|
| 195 |
+
out_text = "I didn't get any input. Give me an image/audio/text or combination of these 3 and get the answer back !"
|
| 196 |
+
|
| 197 |
+
return out_text
|
| 198 |
+
|
| 199 |
+
import gradio as gr
|
| 200 |
+
|
| 201 |
+
markdown_description = """
|
| 202 |
+
- JΓ±Δna is a Multimodal LLM app that can accept input as image, text or audio
|
| 203 |
+
- Based on the input you can query the app for more details
|
| 204 |
+
- Uses **microsoft/phi-2 qlora** optimized model finetuned on **instruct150k** dataset
|
| 205 |
+
- Uses **whisperX** model for audio
|
| 206 |
+
"""
|
| 207 |
+
demo = gr.Interface(fn=gradio_get_answers_fn,
|
| 208 |
+
inputs=[
|
| 209 |
+
gr.Image(type="pil", label="Image"),
|
| 210 |
+
gr.Audio(label="Audio Query", sources=['microphone', 'upload'], type='filepath'),
|
| 211 |
+
gr.Textbox(info="How may I help you ? please enter your prompt here...", label="Text Query")
|
| 212 |
+
],
|
| 213 |
+
outputs=gr.Textbox(label="Response"),
|
| 214 |
+
title="JΓ±Δna - Phi2 Multiomodal Conversation Agent",
|
| 215 |
+
description=markdown_description,
|
| 216 |
+
article=" **Credits** : https://theschoolof.ai/ || https://github.com/mshumer/gpt-llm-trainer || https://github.com/huggingface/peft/tree/main/examples/multilayer_perceptron ")
|
| 217 |
+
|
| 218 |
+
demo.queue().launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
torch
|
| 3 |
+
pandas
|
| 4 |
+
torchvision
|
| 5 |
+
pillow
|
| 6 |
+
git+https://github.com/huggingface/transformers
|
| 7 |
+
git+https://github.com/m-bain/whisperx.git
|
| 8 |
+
git+https://github.com/huggingface/peft.git
|
| 9 |
+
einops
|
| 10 |
+
accelerate
|
| 11 |
+
bitsandbytes
|