Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "WYNN747/Burmese-GPT-v3"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_text(prompt, max_length=100, temperature=0.7):
|
10 |
+
"""Generate text based on the input prompt."""
|
11 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
+
|
13 |
+
# Generate
|
14 |
+
outputs = model.generate(
|
15 |
+
inputs["input_ids"],
|
16 |
+
max_length=max_length,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
temperature=temperature,
|
18 |
+
do_sample=True,
|
19 |
+
pad_token_id=tokenizer.eos_token_id
|
20 |
+
)
|
21 |
+
|
22 |
+
# Decode and return the generated text
|
23 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
return generated_text
|
25 |
+
|
26 |
+
# Create Gradio interface
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=generate_text,
|
29 |
+
inputs=[
|
30 |
+
gr.Textbox(lines=5, placeholder="Enter your Burmese text prompt here..."),
|
31 |
+
gr.Slider(minimum=50, maximum=500, value=100, step=10, label="Max Length"),
|
32 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
],
|
34 |
+
outputs=gr.Textbox(lines=10, label="Generated Text"),
|
35 |
+
title="Burmese-GPT-v3 Text Generation",
|
36 |
+
description="Enter a prompt in Burmese to generate text using the Burmese-GPT-v3 model."
|
37 |
)
|
38 |
|
39 |
+
# Launch the app
|
40 |
+
demo.launch()
|
|