netmouse commited on
Commit
75a7b2f
·
verified ·
1 Parent(s): 6e43625

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +137 -50
app.py CHANGED
@@ -1,63 +1,150 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  ),
58
  ],
 
 
 
 
 
 
 
 
 
 
 
 
59
  )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import torch
2
+ from peft import PeftModel
3
+ import transformers
4
  import gradio as gr
 
5
 
6
+ assert (
7
+ "LlamaTokenizer" in transformers._import_structure["models.llama"]
8
+ ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
9
+ from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
10
 
11
+ tokenizer = LlamaTokenizer.from_pretrained("yentinglin/Llama-3-Taiwan-8B-Instruct")
12
 
13
+ BASE_MODEL = "yentinglin/Llama-3-Taiwan-8B-Instruct"
14
+ LORA_WEIGHTS = "netmouse/Llama-3-Taiwan-8B-Instruct-finetuning-by-promisedchat"
15
+
16
+ if torch.cuda.is_available():
17
+ device = "cuda"
18
+ else:
19
+ device = "cpu"
20
+
21
+ try:
22
+ if torch.backends.mps.is_available():
23
+ device = "mps"
24
+ except:
25
+ pass
26
 
27
+ if device == "cuda":
28
+ model = LlamaForCausalLM.from_pretrained(
29
+ BASE_MODEL,
30
+ load_in_8bit=True,
31
+ torch_dtype=torch.float16,
32
+ device_map="auto",
33
+ )
34
+ model = PeftModel.from_pretrained(
35
+ model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
36
+ )
37
+ elif device == "mps":
38
+ model = LlamaForCausalLM.from_pretrained(
39
+ BASE_MODEL,
40
+ device_map={"": device},
41
+ torch_dtype=torch.float16,
42
+ )
43
+ model = PeftModel.from_pretrained(
44
+ model,
45
+ LORA_WEIGHTS,
46
+ device_map={"": device},
47
+ torch_dtype=torch.float16,
48
+ )
49
+ else:
50
+ model = LlamaForCausalLM.from_pretrained(
51
+ BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
52
+ )
53
+ model = PeftModel.from_pretrained(
54
+ model,
55
+ LORA_WEIGHTS,
56
+ device_map={"": device},
57
+ )
58
 
 
59
 
60
+ def generate_prompt(instruction, input=None):
61
+ if input:
62
+ return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
63
+ ### Instruction:
64
+ {instruction}
65
+ ### Input:
66
+ {input}
67
+ ### Response:"""
68
+ else:
69
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
70
+ ### Instruction:
71
+ {instruction}
72
+ ### Response:"""
73
 
74
+ if device != "cpu":
75
+ pass
76
+ #model.half()
77
+ model.eval()
78
+ if torch.__version__ >= "2":
79
+ model = torch.compile(model)
80
+
81
+
82
+ def evaluate(
83
+ instruction,
84
+ input=None,
85
+ temperature=0.1,
86
+ top_p=0.75,
87
+ top_k=40,
88
+ num_beams=4,
89
+ max_new_tokens=128,
90
+ **kwargs,
91
+ ):
92
+ if instruction == '' or instruction == None:
93
+ return 'Instruction not found. Please enter your instruction.\nInstructionを入力してください。'
94
+ prompt = generate_prompt(instruction, input)
95
+ inputs = tokenizer(prompt, return_tensors="pt")
96
+ input_ids = inputs["input_ids"].to(device)
97
+ generation_config = GenerationConfig(
98
  temperature=temperature,
99
  top_p=top_p,
100
+ top_k=top_k,
101
+ num_beams=num_beams,
102
+ **kwargs,
103
+ )
104
+ with torch.no_grad():
105
+ generation_output = model.generate(
106
+ input_ids=input_ids,
107
+ generation_config=generation_config,
108
+ return_dict_in_generate=True,
109
+ output_scores=True,
110
+ max_new_tokens=max_new_tokens,
111
+ )
112
+ s = generation_output.sequences[0]
113
+ output = tokenizer.decode(s)
114
+ return output.split("### Response:")[1].strip().replace('</s>', '')
115
+
116
+
117
+ g = gr.Interface(
118
+ fn=evaluate,
119
+ inputs=[
120
+ gr.components.Textbox(
121
+ lines=2, label="Instruction", placeholder="例1:日本語から英語に翻訳してください。\n\
122
+ 例2:このテキストを要約してください。\n\
123
+ 例3:英語から日本語に翻訳してください。"
124
+ ),
125
+ gr.components.Textbox(lines=2, label="Input", placeholder="例1:日本語のテキスト\n\
126
+ 例2:日本語の長いテキスト\n\
127
+ 例3:英語のテキスト"),
128
+ gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
129
+ gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
130
+ gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
131
+ gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
132
+ gr.components.Slider(
133
+ minimum=1, maximum=1000, step=1, value=128, label="Max tokens"
134
  ),
135
  ],
136
+ outputs=[
137
+ gr.inputs.Textbox(
138
+ lines=5,
139
+ label="Output",
140
+ )
141
+ ],
142
+ title="Llama2_13b_chat_Japanese_Lora",
143
+ description="Llama-2-13b-chat-Japanese-LoRA is a multi-purpose large language model for Japanese text.\n\
144
+ This model is presented by the joint effort of Sparticle Inc. and A. I. Hakusan Inc.\n\
145
+ Llama-2-13b-chat-Japanese-LoRAは日本語テキストのための多目的大規模言語モデルです。\n\
146
+ このモデルは日本語を話せます。日本語で指示を入力することができます。\n\
147
+ このモデルは、Sparticle株式会社と株式会社白山人工知能の共同開発により発表されました。",
148
  )
149
+ g.queue(concurrency_count=1)
150
+ g.launch()