netmouse commited on
Commit
2acd2cc
·
verified ·
1 Parent(s): 8342e70

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -138
app.py CHANGED
@@ -1,146 +1,29 @@
1
  import gradio as gr
2
- import os
3
- import spaces
4
- from transformers import GemmaTokenizer, AutoModelForCausalLM
5
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
- from threading import Thread
7
 
8
- # Set an environment variable
9
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
 
10
 
 
 
11
 
12
- DESCRIPTION = '''
13
- <div>
14
- <h1 style="text-align: center;">Meta Llama3 8B</h1>
15
- <p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
16
- <p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
17
- <p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
18
- </div>
19
- '''
20
 
21
- LICENSE = """
22
- <p/>
 
23
 
24
- ---
25
- Built with Meta Llama 3
26
- """
27
 
28
- PLACEHOLDER = """
29
- <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
30
- <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
31
- <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
32
- <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
33
- </div>
34
- """
35
 
36
-
37
- css = """
38
- h1 {
39
- text-align: center;
40
- display: block;
41
- }
42
-
43
- #duplicate-button {
44
- margin: auto;
45
- color: white;
46
- background: #1565c0;
47
- border-radius: 100vh;
48
- }
49
- """
50
-
51
- # Load the tokenizer and model
52
- tokenizer = AutoTokenizer.from_pretrained("yentinglin/Llama-3-Taiwan-8B-Instruct")
53
- model = AutoModelForCausalLM.from_pretrained("netmouse/Llama-3-Taiwan-8B-Instruct-finetuning-by-promisedchat", device_map="auto") # to("cuda:0")
54
- terminators = [
55
- tokenizer.eos_token_id,
56
- tokenizer.convert_tokens_to_ids("<|eot_id|>")
57
- ]
58
-
59
- @spaces.GPU(duration=120)
60
- def chat_llama3_8b(message: str,
61
- history: list,
62
- temperature: float,
63
- max_new_tokens: int
64
- ) -> str:
65
- """
66
- Generate a streaming response using the llama3-8b model.
67
- Args:
68
- message (str): The input message.
69
- history (list): The conversation history used by ChatInterface.
70
- temperature (float): The temperature for generating the response.
71
- max_new_tokens (int): The maximum number of new tokens to generate.
72
- Returns:
73
- str: The generated response.
74
- """
75
- conversation = []
76
- for user, assistant in history:
77
- conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
78
- conversation.append({"role": "user", "content": message})
79
-
80
- input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
81
-
82
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
83
-
84
- generate_kwargs = dict(
85
- input_ids= input_ids,
86
- streamer=streamer,
87
- max_new_tokens=max_new_tokens,
88
- do_sample=True,
89
- temperature=temperature,
90
- eos_token_id=terminators,
91
- )
92
- # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
93
- if temperature == 0:
94
- generate_kwargs['do_sample'] = False
95
-
96
- t = Thread(target=model.generate, kwargs=generate_kwargs)
97
- t.start()
98
-
99
- outputs = []
100
- for text in streamer:
101
- outputs.append(text)
102
- #print(outputs)
103
- yield "".join(outputs)
104
-
105
-
106
- # Gradio block
107
- chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
108
-
109
- with gr.Blocks(fill_height=True, css=css) as demo:
110
-
111
- gr.Markdown(DESCRIPTION)
112
- gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
113
- gr.ChatInterface(
114
- fn=chat_llama3_8b,
115
- chatbot=chatbot,
116
- fill_height=True,
117
- additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
118
- additional_inputs=[
119
- gr.Slider(minimum=0,
120
- maximum=1,
121
- step=0.1,
122
- value=0.95,
123
- label="Temperature",
124
- render=False),
125
- gr.Slider(minimum=128,
126
- maximum=4096,
127
- step=1,
128
- value=512,
129
- label="Max new tokens",
130
- render=False ),
131
- ],
132
- examples=[
133
- ['How to setup a human base on Mars? Give short answer.'],
134
- ['Explain theory of relativity to me like I’m 8 years old.'],
135
- ['What is 9,000 * 9,000?'],
136
- ['Write a pun-filled happy birthday message to my friend Alex.'],
137
- ['Justify why a penguin might make a good king of the jungle.']
138
- ],
139
- cache_examples=False,
140
- )
141
-
142
- gr.Markdown(LICENSE)
143
-
144
- if __name__ == "__main__":
145
- demo.launch()
146
-
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
3
+ from peft import PeftModel, LoraConfig
 
 
 
4
 
5
+ # Define the path where the model and adapters are saved
6
+ model_path = "netmouse/Llama-3-Taiwan-8B-Instruct-finetuning-by-promisedchat" # Update this to your model path
7
+ adapter_path = "netmouse/Llama-3-Taiwan-8B-Instruct-finetuning-by-promisedchat" # Assuming adapter is stored in the same path
8
 
9
+ # Load the tokenizer
10
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
11
 
12
+ # Load the base model config
13
+ config = AutoConfig.from_pretrained(model_path)
 
 
 
 
 
 
14
 
15
+ # Load the base model without quantization configurations
16
+ # Ensure that bitsandbytes is not used by removing any reference to 4bit or 8bit
17
+ base_model = AutoModelForCausalLM.from_pretrained(model_path, config=config, ignore_mismatched_sizes=True)
18
 
19
+ # Load the LoRA adapter
20
+ model = PeftModel.from_pretrained(base_model, adapter_path)
 
21
 
22
+ def generate_text(input_text):
23
+ input_ids = tokenizer.encode(input_text, return_tensors='pt')
24
+ outputs = model.generate(input_ids, max_length=50, num_return_sequences=1)
25
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
26
+ return generated_text
 
 
27
 
28
+ iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
29
+ iface.launch()